INORGANIC MATERIALS AND CERAMIC MATRIX COMPOSITES |
|
|
|
|
|
Research Progress of VO2 Intelligent Temperature Control Coating |
BAO Yan1,*, XIE Mengshuang1, GUO Ruyue1, ZHANG Jing2
|
1 College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China 2 College of Medicine and Chemical Engineering, Xianyang Polytechnic Institute, Xianyang 712000, Shaanxi, China |
|
|
Abstract Vanadium dioxide (VO2) , a typical binary transition metal oxide, has the characteristics of metal-insulator phase transformation, which can achieve the reversible transformation of monoclinic insulating phase and stable rutile metal phase at about 68 ℃, and it has a good application prospect in the construction field for it. In recent years, the preparation technology for VO2 has been relatively mature, but the improvement of its thermochromic performance is still the focus of research. Based on it, with the thermochromic performance control of VO2 as the center, this paper summarized the research progress of VO2 intelligent temperature control coatings. Firstly, the crystal structure and band structure changes of VO2 before and after the phase transition are summarized, and the three phase transition mechanisms based on the Mott theory, the Peierls theory and the Mott-Peierls synergy theory are discussed in detail. Secondly, the influence of elemental doping on the phase transition temperature of VO2 is clarified, and the enhancement principle of the structural design of core-shell structure and multilayer film structure on the comprehensive properties of VO2 such as optical properties, oxidation resistance and environmental stability is further clarified. Moreover, the characteristics and advantages of each strategy are analyzed and compared. Finally, the existing problems of VO2 at the present stage are pointed out, and its future development is prospected. It is helpful to provide reference for researchers in related fields.
|
Published: 10 April 2025
Online: 2025-04-10
|
|
|
|
1 Santamouris M. Minimizing energy consumption, energy poverty and global and local climate change in the built environment:innovating to zero:causalities and impacts in a zero concept world, Elsevier, UK, 2018, pp.167. 2 Enríquez E, Fuertes V, Solar Energy, 2017, 149, 114. 3 Shi R, Shen N, Wang J, et al. Applied Physics Reviews, 2019, 6(1), 011312. 4 Coşkun M, Altınöz S, Coşkun Ö D. Photonics and Nanostructures-Fundamentals and Applications, 2022, 49, 100993. 5 Günther A, Lohringer H, Müller D, et al. Journal of Physics and Che-mistry of Solids, 2022, 170, 110897. 6 Fukawa A, Nakazawa T, Tamura J, et al. Applied Physics Letters, 2023, 122, 052403. 7 Rana A, Li C, Koster G, et al. Scientific Reports, 2020, 10(1), 3293. 8 Lu Y C, Hsueh C H. ACS Applied Nano Materials, 2022, 5(2), 2923. 9 Thangappan R, Kumar R D, Jayavel R. Diamond and Related Materials, 2023, 137, 110102. 10 Wang S, Liu M, Kong L, et al. Progress in Materials Science, 2016, 81, 1. 11 Morin F J. Physical review letters, 1959, 3(1), 34. 12 Fillingham P J. Journal of Applied Physics, 1967, 38(12), 4823. 13 Eyert V. Annalen der Physik, 2002, 514(9), 650. 14 Liu H, Lu J, Wang X R. Nanotechnology, 2017, 29(2), 024002. 15 Guo Y, Zhang Y, Zhang L, et al. Materials Research Express, 2018, 6(2), 026409. 16 Jana A, Sahoo S, Chowdhury S, et al. Physical Review B, 2022, 106(20), 205123. 17 Ergün Y, Jeckelmann E. Physical Review B, 2020, 101(8), 085403. 18 Quackenbush N F, Paik H, Holtz M E, et al. Physical Review B, 2017, 96(8), 081103. 19 Xue Y, Yin S. Nanoscale, 2022, 14(31), 11054. 20 Qin S, Fan Y, Qiu X, et al. ACS Applied Electronic Materials, 2022, 4(12), 6067. 21 Zhao Z, Liu Y, Wang D, et al. Solar Energy Materials and Solar Cells, 2020, 209, 110443. 22 Li Z, Liu X, Li W, et al. Vacuum, 2021, 184, 109903. 23 Krammer A, Matilainen A, Pischow K, et al. Solar Energy Materials and Solar Cells, 2022, 240, 111680. 24 Victor J L, Gaudon M, Salvatori G, et al. The Journal of Physical Che-mistry Letters, 2021, 12(32), 7792. 25 Hunt G M, Miragliotta J A, Ginn J, et al. Applied Physics Letters, 2023, 123(7), 071103. 26 Verma D, Chandran Y, Uniyal P, et al. Journal of the American Ceramic Society, 2023, 106(7), 4321. 27 Bao Y, Guo R, Ge X, et al. Progress in Organic Coatings, 2023, 180, 107574. 28 Chen F, Yuan L, Wu X, et al. Ceramics International, 2023, 49(15), 25585. 29 Zhao C, Li Z, Sun S, et al. Vacuum, 2022, 203, 111309. 30 Zhang Y, Tan X, Huang C, et al. Materials Research Innovations, 2015, 19(4), 295. 31 Zhao Z, Li D, Yang J, et al. Applied Surface Science, 2023, 635, 157705. 32 Outón J, Casas-Acuña A, Domínguez M, et al. Applied Surface Science, 2023, 608, 155180. 33 Suleiman A O, Mansouri S, Margot J, et al. Applied Surface Science, 2022, 571, 151267. 34 Kurajica S, Mandić V, Panić I, et al. Nanomaterials, 2020, 10(12), 2537. 35 Huang T, Kang T, Li Y, et al. Optical Materials Express, 2018, 8(8), 2300. 36 Bleu Y, Bourquard F, Barnier V, et al. Materials, 2023, 16(1), 461. 37 Ding X, Li Y, Zhang Y. Molecules, 2023, 28(9), 3778. 38 Pei R, Ma X, Han C, et al. Zeitschrift für Anorganische und Allgemeine Chemie, 2022, 648(14), e202200132. 39 Zou Z, Zhang Z, Xu J, et al. Journal of Alloys and Compounds, 2019, 806, 310. 40 Wang L, Hao Y Q, Ma W, et al. Rare Metals, 2021, 40, 1337. 41 Wang S, Wei W, Huang T, et al. Advanced Engineering Materials, 2019, 21(12), 1900947. 42 Cui Y, Cao C, Chen Z, et al. Computational Materials Science, 2017, 130, 103. 43 Liu Y, Jiang T, Lv Y, et al. Materials Research Express, 2023, 10(3), 035008. 44 Haji H F, Numan N, Madiba I G, et al. Journal of Electronic Materials, 2023, 52(6), 4020. 45 Xie D, Li Y, Liu Y, et al. Catalysis Letters, 2023, 154, 1847. 46 Baqir M A, Choudhury P K, Naqvi Q A, et al. IEEE Access, 2020, 8, 84850. 47 Li D, Deng S, Zhao Z, et al. Applied Surface Science, 2022, 598, 153741. 48 Sun X, Qu Z, Yuan J, et al. Ceramics International, 2021, 47(20), 29011. 49 Wen Z, Ke Y, Feng C, et al. Advanced Materials Interfaces, 2021, 8(1), 2001606. 50 Saini M, Dehiya B S, Umar A. Ceramics International, 2020, 46(1), 986. 51 Pi J, Li C B, Sun R Y, et al. Composites Communications, 2022, 32, 101167. 52 Lu Y, Cao Z, Chen C, et al. Ceramics International, 2023, 49(11), 19541. 53 Qu Z, Yao L, Ma S, et al. Solar Energy Materials and Solar Cells, 2019, 200, 109920. 54 Liu Y, Sun R, Jin B, et al. ACS Applied Nano Materials, 2022, 5(4), 5599. 55 Liu Y, Xu W Z, Charpentier P A. Progress in Organic Coatings, 2020, 142, 105589. 56 Bleu Y, Bourquard F, Poulet A, et al. Ceramics International, 2023, 49(9), 13542. 57 Xu F, Cao X, Shao Z, et al. ACS Applied Materials & Interfaces, 2019, 11(5), 4712. |
|
|
|