POLYMERS AND POLYMER MATRIX COMPOSITES |
|
|
|
|
|
Construction Strategies,Classifications and Applications of Artificial Enzyme Mimics |
LI Zhaozhou1,2,, ZHANG Xiaochong1,2,, WEI Yuhua1,2, GUO Jinrui1,2, ZHAO Minghui1,2, WANG Yao1,2,*, WAN Ningbo1,2, GU Shaobin1,2, KANG Huaibin1,2, LUO Lei1,2
|
1 College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471000, Henan, China 2 Henan International Joint Laboratory of Food Green Processing and Quality Safety Control, Luoyang 471000, Henan, China |
|
|
Abstract Artificial enzyme mimics possess similar catalytic activities to natural enzymes and advantages of tunability, stability, reproducibility, and ease of large-scale production. They have broad application prospects in the fields of catalysis, sensing detection, drug production and energy exploitation. Based on the structures and catalytic mechanisms of natural enzymes and the characteristics of existing enzyme mimics, this paper expounds the basic strategies for the construction of enzyme mimics, including the construction of substrate binding sites and the introduction of ca-talytic groups. The characteristics of different construction strategies are investigated, and the related technical approaches are discussed. According to the different carriers of enzyme mimics, polypeptide enzyme mimics, nanomaterial enzyme mimics, and supramolecular enzyme mi-mics are introduced. Furthermore, the catalytic mechanisms and future development trends of various enzyme mimics are proposed and prospected, and their applications in trace matter analysis, biomedicine and environmental protection are also briefly summarized. The related contents provide theoretical references for the development of enzyme mimics and technical supports for their widespread applications.
|
Published: 10 March 2025
Online: 2025-03-18
|
|
|
|
1 Wang Q, Wei H, Zhang Z, et al. TrAC Trends in Analytical Chemistry, 2018, 105, 218. 2 Huang W, Huang S, Chen G, et al. Chembiochem, 2022, 23(10), e202100567. 3 Wang J, Yan H, Li J, et al. Progress in Chemistry, 2018, 30(8), 1121. 4 Shafaat H S, Manesis A C, Yerbulekova A. Accounts of Chemical Research, 2023, 56(9), 984. 5 Yeganegi A, Fardindoost S, Tasnim N, et al. Talanta, 2024, 267, 125271. 6 Zhang Y, Song Z M, Du Y. Chinese Journal of Analytical Chemistry, 2023, 51(5), 800. 7 Wei X Y. Artificial enzyme mimics and bionic catalysis technology, University of Electronic Science and Technology of China Press, 2016, pp.72 (in Chinese). 魏星跃. 人工酶模拟与仿生催化技术, 电子科技大学出版社, 2016, pp.72. 8 Chen D, Li Y, Li X, et al. Arabian Journal of Chemistry, 2022, 15(2), 103611. 9 Liu Y, Wang Z G. ACS Nano, 2023, 17(14), 13000. 10 Biniuri Y, Albada B, Wolff M, et al. ACS Catalysis, 2018, 8(3), 1802. 11 Tian R, Li Y, Xu J, et al. Journal of Materials Chemistry B, 2022, 10(35), 6590. 12 Orbay S, Kocaturk O, Sanyal R, et al. Micromachines, 2022, 13(9), 1464. 13 Zhang Z, Zhang X, Liu B, et al. Journal of the American Chemical Society, 2017, 139(15), 5412. 14 Zhou Q, Xu Z, Liu Z. Biosensors, 2022, 12(8), 576. 15 Rameshbabu R, Pecchi G, Delgado E J, et al. Journal of Photochemistry and Photobiology A:Chemistry, 2021, 411, 113211. 16 Ding J, Wang F, Pan F, et al. ACS Catalysis, 2021, 11(21), 13721. 17 Liu Y, Xia Y, Tang Y, et al. Analytica Chimica Acta, 2022, 1227, 340301. 18 Kamel S, Khattab T A. Cellulose, 2021, 28(8), 4545. 19 Ho T T T, Chi-Hien D, Huynh T K C, et al. Carbohydrate Polymers, 2021, 251, 116998. 20 Pan M M, Li P, Yu Y P, et al. Advanced Healthcare Materials, 2023, 12(26), 2300821. 21 Chen Y, He Y, Xu H, et al. Nano Today, 2022, 43, 101421. 22 Li X W, Zangiabadi M, Zhao Y. Journal of the American Chemical Society, 2021, 143(13), 5172. 23 Chen J, Zheng X, Zhang J, et al. National Science Review, 2022, 9(3), 186. 24 Qiu X C, Fan C X, Bai R, et al. Chinese Science Bulletin, 2024, 69(Z1), 553 (in Chinese). 邱星晨, 范存霞, 白瑞, 等. 科学通报, 2024, 69(Z1), 553. 25 He J, Zhang L, Xu L, et al. Advances in Polymer Technology, 2020, 2020, 1. 26 Xu X, Wang J, Huang R, et al. Catalysis Science & Technology, 2021, 11(10), 3402. 27 Makam P, Yamijala S S R K C, Bhadram V S, et al. Nature Communications, 2022, 13(1), 1505. 28 Li T T, Yue C F, Huo Y Q, et al. Chemical Journal of Chinese Universities, 2024, 45(1), 32 (in Chinese). 李婷婷, 岳彩凤, 霍媛青, 等. 高等学校化学学报, 2024, 45(1), 32. 29 Wang Y, Yang L, Wang M, et al. ACS Catalysis, 2021, 11(9), 5839. 30 Díaz-Caballero M, Navarro S, Nuez-Martínez M, et al. ACS Catalysis, 2020, 11(2), 595. 31 Liu Q, Wan K W, Shang Y X, et al. Nature Materials, 2021, 20(3), 395. 32 Jian T, Zhou Y, Wang P, et al. Nature Communications, 2022, 13(1), 3025. 33 Liu Q, Kuzuya A, Wang Z G. IScience, 2023, 26(1), 105831. 34 Gao L, Zhuang J, Nie L, et al. Nature Nanotechnology, 2007, 2(9), 577. 35 Elsayed M H, Jayakumar J, Abdellah M, et al. Applied Catalysis B:Environmental, 2021, 283, 119659. 36 Bazin D, Vekeman J, Wang Q, et al. Comptes Rendus Chimie, 2022, 25, 237. 37 Gao L Z, Chen L, Zhang R F, et al. Scientia Sinica Chimica, 2022, 52(9), 1649 (in Chinese). 高利增, 陈雷, 张若飞, 等. 中国科学:化学, 2022, 52(9), 1649. 38 Kang S, Lee K, Ryu J H, et al. ACS Applied Nano Materials, 2023, 6(6), 4319. 39 Gao Y, Ding J. Advanced Materials Technologies, 2023, 8(2), 2200263. 40 Dhiman N, Ghosh S, Mishra Y K, et al. Materials Advances, 2022, 3(7), 3101. 41 Tang Y, Chen Y, Liu Y, et al. Analytical Chemistry, 2022, 94(51), 17787. 42 Xu Z, Sun P, Zhang J, et al. Chemical Engineering Journal, 2020, 399, 125797. 43 Zeng G, Duan M, Xu Y, et al. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy, 2020, 241, 118649. 44 Zhu D, Zhang M, Pu L, et al. Small, 2022, 18(3), 2104993. 45 Gao W, He J, Chen L, et al. Nature Communications, 2023, 14(1), 160. 46 Zhao J, Gong J, Wei J, et al. Journal of Colloid and Interface Science, 2022, 618, 11. 47 Jain S, Sharma B, Thakur N, et al. ACS Applied Nano Materials, 2020, 3(8), 7917. 48 Chen Y, Wang P, Hao H, et al. Journal of the American Chemical Society, 2021, 143(44), 18643. 49 Fan H Z, Zheng J J, Xie J Y, et al. Advanced Materials, 2024, 36(10), 2300387. 50 Jin G, Liu J, Wang C, et al. Applied Catalysis B:Environmental, 2020, 267, 118725. 51 Mansur A A P, Leonel A G, Krambrock K, et al. Catalysis Today, 2022, 397, 129. 52 Deshmukh A R, Aloui H, Kim B S. Chemical Engineering Journal, 2021, 421, 127859. 53 Wang Z Z, Wu J X, Zheng J J, et al. Nature Communications, 2021, 12(1), 6866. 54 Dong J, Han X, Liu Y, et al. Angewandte Chemie-International Edition, 2020, 59(33), 13722. 55 Han W K, Liu Y, Yan X, et al. Materials Chemistry Frontiers, 2023, 7(15), 2995. 56 Fan C X, Gu Y, Qiu X C, et al. Materials Reports, 2023, 37(2), 22030004 (in Chinese). 范存霞, 谷雨, 邱星晨, 等. 材料导报, 2023, 37(2), 22030004. 57 Li Y, Bai X, Yuan D, et al. Nature Communications, 2023, 14(1), 3171. 58 Li J N, Liu T T, Dahlgren R A, et al. Analytica Chimica Acta, 2022, 1204, 339703. 59 Ma R L, He Q, Liang M J, et al. Chinese Journal of Analytical Chemistry, 2022, 50(4), 545 (in Chinese). 马如龙, 郝茜, 梁梦佳, 等. 分析化学, 2022, 50(4), 545. 60 Xue Y, Ji Y, Wang X, et al. Green Energy & Environment, 2023, 8(3), 864. 61 Lu Z W, Dang Y, Dai C L, et al. Journal of Hazardous Materials, 2021, 403, 123979. 62 Feng Y Y, Qin J, Zhou Y, et al. Journal of Colloid and Interface Science, 2022, 606, 826. 63 Luo Q, Li Y, Huo X, et al. Small, 2022, 18(16), 2107401. 64 Zhang S F, Li Y H, Sun S, et al. Nature Communications, 2022, 13(1), 4744. 65 Chen Y, Jiao L, Yan H, et al. Analytical Chemistry, 2020, 92(19), 13518. 66 Tripathi K M, Ahn H T, Chung M, et al. ACS Biomaterials Science & Engineering, 2020, 6(10), 5527. 67 Xiao F, Xia Q, Zhang S, et al. Journal of Hazardous Materials, 2024, 465, 133126. 68 Muhammad P, Hanif S, Li J Y, et al. Nano Today, 2022, 45, 101530. 69 Dong C, Wang S, Ma M, et al. Applied Materials Today, 2021, 25, 101178. 70 Yeniterzi D, Demirsoy Z, Saylam A, et al. Macromolecular Bioscience, 2022, 22(9), 2200079. 71 Wang B, Zhang X D, Kang G, et al. Chinese Journal of Analytical Chemistry, 2022, 50(1), 54 (in Chinese). 王波, 张续东, 康革, 等. 分析化学, 2022, 50(1), 54. 72 Zhang J, Bai Q, Bi X, et al. Nano Today, 2022, 431, 01429. 73 Zhang Y, Yang S, Wang J, et al. Talanta, 2021, 233, 122594. 74 Zhu D, Zhang M, Wang C, et al. Chemistry of Materials, 2022, 34(24), 11072. 75 Pan Y, Wang X, Lin H, et al. Nanoscale, 2023, 15(34), 14068. 76 Chen Q, Zhang X, Li S, et al. Chemical Engineering Journal, 2020, 395, 125130. 77 He S, Yang L, Balasubramanian P, et al. Journal of Materials Chemistry A, 2020, 8(47), 25226. 78 Wu Z J, Xie L K, Wang J H, et al. Chemical Industry and Engineering Progress, 2023, 42(1), 497 (in Chinese). 吴中杰, 谢连科, 王晶辉, 等. 化工进展, 2023, 42(1), 497. 79 Zhang C X, Gao Y C, Li H W, et al. ACS Applied Nano Materials, 2020, 3(9), 9318. 80 Gharib M, Kornowski A, Noei H, et al. ACS Materials Letters, 2019, 1(3), 310. 81 Li C, Wang Y, Chen Y, et al. Materials Today Sustainability, 2023, 241, 00537. 82 Wang J, Tao H, Lu T, et al. Journal of Colloid and Interface Science, 2021, 584114. 83 Wei D, Zhang X, Chen B, et al. Analytica Chimica Acta, 2020, 1126106. 84 Zhao H, Zeng L H, Xu X L. Chinese Journal of Low Temperature Physics, 2020, 42(3), 152 (in Chinese). 赵赫, 曾令辉, 许小亮. 低温物理学报, 2020, 42(3), 152. 85 Wang C, Zhang M, Bai L, et al. Analytical Chemistry, 2023, 95(17), 7014. 86 Yang W, Li J, Wang M, et al. Colloids and Surfaces B:Biointerfaces, 2020, 188, 110742. 87 He S B, Yang L, Lin X L, et al. Talanta, 2020, 211, 120707. 88 Wang D, Gong C, Zhao H. Microchemical Journal, 2022, 181, 107706. 89 Yang H, He Q, Pan J, et al. Sensors and Actuators B:Chemical, 2022, 351, 130905. 90 Xiao Z, Qu K, Ye F, et al. Science China Materials, 2023, 66(9), 3592. 91 Wulff G, Sarhan A. Angewandte Chemie-International Edition, 1972, 11,341. 92 Vlatakis G, Andersson L I, Müller R, et al. Nature, 1993, 361(6413), 645. 93 Jin J Y, Li Z Z, Chen X J, et al. Chemical Reagents, 2022, 44(11), 1558 (in Chinese). 金久煜, 李兆周, 陈秀金, 等. 化学试剂, 2022, 44(11), 1558. 94 Gong B C, Hu Q H, Su A X, et al. Food Science, 2021, 42(12), 281 (in Chinese). 巩碧钏, 胡秋辉, 苏安祥, 等. 食品科学, 2021, 42(12), 281. 95 He X, Luo Q, Guo Z, et al. Journal of Materials Chemistry B, 2022, 10(35), 6716. 96 Guo Z, Luo Q, Liu Z. Chemistry-a European Journal, 2022, 28(61), e202202052. 97 Chen Z, Liu X, Huang C, et al. ACS Applied Materials & Interfaces, 2020, 12(5), 6615. 98 Peng J, Deng F, Shi H, et al. Applied Catalysis B-Environmental, 2024, 340, 123179. 99 Khosropour H, Keramat M, Laiwattanapaisal W. Biosensors & Bioelectronics, 2024, 243, 115754. 100 Wu D, Baaziz W, Gu B, et al. Nature Catalysis, 2021, 4(7), 595. 101 He D C, Li T, Dai X C, et al. Journal of the American Chemical Society, 2023, 145(38), 20813. 102 Ostovan A, Arabi M, Wang Y, et al. Advanced Materials, 2022, 34(42), 2203154. 103 Arabi M, Ostovan A, Li J, et al. Advanced Materials, 2021, 33(30), 2100543. 104 Zangiabadi M, Zhao Y. Journal of the American Chemical Society, 2022, 144(37), 17110. 105 Tang M, Wan J Q, Wang Y, et al. Applied Catalysis B-Environmental, 2023, 334, 122852. 106 Shen H M, Ji H B, Wu H K, et al. Chinese Journal of Organic Chemistry, 2014, 34(8), 1549 (in Chinese). 沈海民, 纪红兵, 武宏科, 等. 有机化学, 2014, 34(8), 1549. 107 Paul S, Das S, Mitra B, et al. RSC Advances, 2023, 13(8), 5457. 108 Lu W, Zhang J, Li N, et al. Sensors and Actuators B:Chemical, 2020, 303, 127106. 109 Li F, Hu Y, Zhao A, et al. Microchimica Acta, 2020, 187, 1. 110 Jiang W J, He R, Lv H, et al. ACS Sensors, 2023, 8(11), 4264. 111 Tu X, Gao F, Ma X, et al. Journal of Hazardous Materials, 2020, 396, 122776. 112 Czescik J, Lyu Y C, Neuberg S, et al. Journal of the American Chemical Society, 2020, 142(15), 6837. 113 Yadav R, Chundawat T S, Surolia P K, et al. Journal of Physics and Chemistry of Solids, 2022, 165, 110691. 114 Liu Q, Wang J, Duan C, et al. Journal of Hazardous Materials, 2022, 426, 128074. 115 Cheng N, Chen Y, Wu X, et al. Chemical Communications (Cambridge, United Kingdom), 2018, 54(49), 6284. 116 Narkhede N, Uttam B, Rao C P. Inorganica Chimica Acta, 2018, 483, 337. 117 Lisi D, Vezzoni C A, Casnati A, et al. Chemistry (Weinheim an der Bergstrasse, Germany), 2023, 29(12), e202203213. 118 Li N, Lin J M, Li R H, et al. Journal of the American Chemical Society, 2023, 145(29), 16098. 119 Shi J W, Sun S N, Liu J, et al. ACS Catalysis, 2022, 12(22), 14436. 120 Santoro O, Redshaw C. Coordination Chemistry Reviews, 2021, 448, 214173. 121 Zhu Z K, Zhang J, Cong Y C, et al. Angewandte Chemie-International Edition, 2022, 61(7), e202113381. 122 Yu X F, Wang G R, Xu G, et al. Chemical Engineering & Equipment, 2020(1), 216 (in Chinese). 于晓锋, 王光荣, 徐刚, 等. 化学工程与装备, 2020(1), 216. 123 Xu K Q, Li J H, Liu F M, et al. Angewandte Chemie-International Edition, 2023, 62(50), e202311968. 124 Han D D, Sun L H, Li Z Q, et al. Energy Storage Materials, 2024, 65, 103143. 125 Tang J, Chen C, Hong T, et al. Organic Letters, 2022, 24(43), 7955. 126 Kondo M, Nakamura K, Krishnan C G, et al. ACS Catalysis, 2021, 11(3), 1863. 127 Ono K, Niibe M, Iwasawa N. Chemical Science, 2019, 10(32), 7627. 128 Xia Y, Song Z, Tan Z, et al. Nature Communications, 2021, 12(1), 732. 129 Martinez-Cuezva A, Marin-Luna M, Alonso D A, et al. Organic Letters, 2019, 21(13), 5192. 130 Heard A W, Goldup S M. Chem, 2020, 6(4), 994. 131 Perez J D, Puigcerver J, Orlando T, et al. Organic Chemistry Frontiers, 2021, 8(15), 4202. 132 Tang Y P, Luo Y E, Xiang J F, et al. Angewandte Chemie International Edition, 2022, 61(15), e202200638. 133 Ruan X, Yang Y, Liu W, et al. ACS Central Science, 2021, 7(10), 1698. 134 Li J, Huang D, Fang Q, et al. Chinese Science Bulletin-Chinese, 2022, 67(20), 2383. 135 Martinez-Cuezva A, Saura-Sanmartin A, Alajarin M, et al. ACS Catalysis, 2020, 10(14), 7719. 136 Feehan R, Franklin M W, Slusky J S G. Nature Communications, 2021, 12(1), 3712. 137 Wei Y H, Wu J, Wu Y X, et al. Advanced Materials, 2022, 34(27), 2201736. |
|
|
|