METALS AND METAL MATRIX COMPOSITES |
|
|
|
|
|
Design of Rubik's Cube-like Porous Metamaterials and Study on Their Adjustable Elastic Modulus |
HUANG Kunpeng1,2, ZHANG Yubo1,2, YANG Nan1,2,*
|
1 Engineering College, Shantou University, Shantou 515063, Guangzhou, China 2 Key Laboratory of Intelligent Manufacturing of Ministry of Education, Shantou University, Shantou 515063, Guangzhou, China |
|
|
Abstract By taking advantage of the characteristics of the cube's diverse changing modes and ignoring the influence of the spherical volume of the Rubik's slide rail, the subblocks of the cube are replaced with porous units. Through modeling, simulation and calculation, the elastic modulus of the Rubik's Cube-like composite structure under different programming modes is studied. Finally, it is verified that under the same forming material, the Rubik's Cube-like composite structure can effectively regulate its overall elastic modulus by changing its combination mode. The larger the difference in the volume fraction of the subunits, the larger the elastic modulus span of the whole structure, and the elastic modulus of the face-centered cubic lattice is larger than that of the cubic lattice span. When the ratio of upper and lower volume fraction of the face-centered cubic lattice substructure is 1∶9, the elastic modulus of the whole composite structure is minimum 2.2 MPa and maximum 54.29 MPa. The porous Rubik's Cube structure proposed in this work is expected to realize multiple programmable elastic moduli of the same substructure, and can be used as a multi-functional material in medical, aerospace, mechanical manufacturing and other fields.
|
Published: 10 April 2025
Online: 2025-04-10
|
|
|
|
1 Yin J F, Cai L, Fang X, et al. Advances in Mechanics, 2022, 52(3), 508(in Chinese). 尹剑飞, 蔡力, 方鑫, 等. 力学进展, 2022, 52(3), 508. 2 Kshetrimayum R S. IEEE Potentials, 2004, 23(5), 44. 3 Cai W S, Uday K C, Alexander V K, et. al. Nature Photonics, 2007, 1(4), 224. 4 Vladimir M S. Nature Photonics, 2007, 1(1), 41. 5 Wu L L, Tian X Y, Li D C, et al. Science & Technology Review, 2022, 40(1), 161(in Chinese). 吴玲玲, 田小永, 李涤尘, 等. 科技导报, 2022, 40(1), 161. 6 Grima J N, Caruana-Gauci R, Attard D, et al. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2012, 468(2146), 3121. 7 Bertoldi K, Reis P M, Willshaw S, et al. Advanced Materials, 2010, 22(3), 361. 8 Sahab B, Jongmin S, James C, et al. Advanced Materials, 2013, 25(36), 5044. 9 Guo X G, Ni X Y, Li J H, et al. Advanced Materials, 2021, 33(3), 2004919. 10 Ha C, Hestekin E, Li J H, et al. Physica Status Solidi, 2015, 252(7), 1431. 11 Florijn B, Coulais C, Hecke M V, et al. Physical Review Letters, 2014, 113(17), 175503. 12 El H C, Buskohl P R, Tabor C E, et al. Nature Communications, 2021, 12(1), 1. 13 Meng Z Q, Chen W T, Mei T, et al. Extreme Mechanics Letters, 2021, 43, 101180. 14 Christensen J, Abajo F J G D. Physical Review B, 2012, 86(2), 024301. 15 Jones R M. Mechanical Meta-Materials, 2018, 246, 14. 16 Amir A Z. Materials Horizons, 2016, 3(5), 371. 17 Neugebauer A, Chen K, Tang A, et al. Energy and Buildings, 2014, 79, 47. 18 Smith B H, Szyniszewski S, Hajjar J, et al. Materials Science, 2012, 2(4), 399. 19 Miller W, Evans K E A. Applied Physics Letters, 2015, 106(23), 231903. 20 Ali E A, Jiyoung O H, Mikhail E A E, et al. Science, 2009, 323(5921), 1575. 21 Joseph N G, Roberto C G. Nature Materials, 2012, 11(7), 565. 22 Mahmoud D, Mohamed A. Journal of Manufacturing and Materials Processing, 2017, 1(2), 13. 23 Niknam H, Akbarzadeh A H, Rodrigue D, et al. Materials & Design, 2018, 148, 188. 24 Qi D, Lu Q Y, He C W, et al. Extreme Mechanics Letters, 2019, 32, 100568. 25 William F H. Fotheringham's sporting pastimes, London: Anova Books, 2007, pp.25. 26 Jerry S, David S, Huang W H, et al. The cube: the ultimate guide to the world's bestselling puzzle-secrets, stories, solutions, New York: Black Dog & Leventhal Publishers, 2009, pp.1. 27 Stephen V D. Reference Reviews, 2001, 15(1), 38. 28 Hukmani K, Kolekar S, Vobugari S. Engineering Letters, 2021, 29(4), 1535. 29 Mu L J, Hu W J, Tao J L. China Measurement & Test, 2017, 43(11), 129(in Chinese). 穆磊金, 胡文军, 陶俊林. 中国测试, 2017, 43(11), 129. |
|
|
|