INORGANIC MATERIALS AND CERAMIC MATRIX COMPOSITES |
|
|
|
|
|
Dynamically Chemical Damage Model for Sandstone Based on Mineral Dissolution Theory |
LIANG Yanling1,2, HUO Runke1,2,*, SONG Zhanping1,2, MU Yanhu3, QIU Tian1,2, SONG Ziyi1,2
|
1 School of Civil Engineering, Xi’an University of Architecture and Technology, Xi’an 710055, China 2 Shaanxi Key Laboratory of Geotechnical and Underground Space Engineering, Xi’an University of Architecture and Technology, Xi’an 710055, China 3 State Key Laboratory of Frozen Soil Engineering, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730050, China |
|
|
Abstract The deterioration of the physical and mechanical properties of rock under an acidic environment is essentially caused by the dissolution of rock minerals and further the expansion and penetration of pores and microcracks.To study the dissolution characteristics of sandstone minerals in an acidic environment, pH=1, 3 HCl solution was selected as the corrosive environment.The composition and content of sandstone minerals were identified by X-ray diffraction test, and the pH value of the solution, cation concentration, mass, and longitudinal wave velocity of samples were tested under different immersion periods.The dynamic chemical damage model for sandstone reflecting the corrosion process was established based on the mineral dissolution theory and chemical kinetic principle.The results show that the damage of sandstone in an acidic environment was mainly caused by the dissolution of feldspar and calcite.The mineral dissolution can be divided into three steps:interface adsorption, interface exchange, and desorption, and the slowest one plays a controlling role.The dissolution rate was proportional to the nth power of the H+ concentration, and the value of n (0<n≤1) was related to the properties of minerals and the pH value of the solution.The acid-rock reaction was time-dependent;the reaction rate decreased with the corrosion time and tended to be stable.The sandstone deteriorated more seriously with the lower pH value and longer corrosion time.Under the action of pH=1, 3 HCl solution, the change laws of sandstone porosity with corrosion time, obtained by the chemical damage model, was in good agreement with that obtained by the longitudinal wave velocity, which verified the validity and rationality of the model built in the study.The finding can provide theoretical references for safety assessment and disaster prevention of rock mass engineering under an acidic environment.
|
Published: 25 April 2024
Online: 2024-04-28
|
|
Fund:National Natural Science Foundation of China (41172237,52178393) and Open Fund of State Key Laboratory of Frozen Soil Engineering (SKLFSE202107). |
|
|
1 Zhu C P, Liu H L. Rock and Soil Mechanics, 2007, 28(3), 625(in Chinese). 朱春鹏, 刘汉龙. 岩土力学, 2007, 8(3), 625. 2 Knauss K G, Wolery T J. Geochimica et Cosmochimica Acta, 1986, 50(11), 2481. 3 Heigeson H C, Murphy W M, Aagaard P. Geochimica et Cosmochimica Acta, 1984, 48(12), 2405. 4 Rimstidt J D, Barnes H L. Geochimica et Cosmochimica Acta, 1980, 44(11), 1683. 5 Zhang P Y, Feng X X, Liu G, et al. Materials Reports, 2023, 37(17), 1(in Chinese). 张鹏翼, 封孝信, 刘刚, 等. 材料导报, 2023, 37(17), 1. 6 Yue G F, Li X Y, Gan H N, et al. Acta Geologica Sinica, 2020, 94(7), 2107(in Chinese). 岳高凡, 李晓媛, 甘浩男, 等. 地质学报, 2020, 94(7), 2107. 7 Wang J X, Zhu H H, Tang Y Q, et al. Journal of Tongji University(Natural Science), 2004, 32(9), 1126(in Chinese). 王建秀, 朱合华, 唐益群, 等. 同济大学学报(自然科学版), 2004, 32(9), 1126. 8 Wang J X. Theoretical and applied analysis on hydrochemical-hydraulic damage in tunnel surrounding rock. Ph. D. Thesis, Southwest Jiaotong University, 2002(in Chinese). 王建秀. 腐蚀损伤岩体中的水化-水力损伤及其在隧道工程中的应用研究. 博士学位论文, 西南交通大学, 2002. 9 Li Peng, Liu Jian, Li Guohe, et al. Rock and Soil Mechanics, 2011, 32(2), 380(in Chinese). 李鹏, 刘建, 李国和, 等. 岩土力学, 2011, 32(2), 380. 10 Li P. Journal of Railway Engineering Society, 2018, 35(4), 16(in Chinese). 李鹏. 铁道工程学报, 2018, 35(4), 16. 11 Ma T, Ding W X, Wang H Y, et al. Chinese Journal of Geotechnical Engineering, 2021, 43(8), 1550(in Chinese). 马涛, 丁梧秀, 王鸿毅, 等. 岩土工程学报, 2021, 43(8), 1550. 12 Wang W, Liu T G, Lv J, et al. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(S2), 3607(in Chinese). 王伟, 刘桃根, 吕军, 等. 岩石力学与工程学报, 2012, 31(S2), 3607. 13 Wang W, Liu T G, Li X H, et al. Journal of Central South University(Science and Technology), 2015, 46(10), 38017(in Chinese). 王伟, 刘桃根, 李雪浩, 等. 中南大学学报(自然科学版), 2015, 46(10), 3801. 14 Huo R K, Liang Y L, Li S G, et al. Arabian Journal of Geosciences, 2022, 15(6), 1. 15 Liang Y L, Huo R K, Mu Y H, et al. International Journal of Geomechanics, 2023, 23(3), 04022300. 16 Liang Y L, Huo R K, Song Z P, et al. Journal of China Coal Society, 2023, 48(4), 1527(in Chinese). 梁艳玲, 霍润科, 宋战平, 等. 煤炭学报, 2023, 48(4), 1527. 17 Ma T S, Chen P. Petroleum Exploration and Development, 2014, 41(2), 249. 18 Li N, Zhu Y M, Su B, et al. International Journal of Rock Mechanics & Mining Sciences, 2003, 40(2), 243. 19 Han T L, Shi J P, Chen Y S, et al. International Journal of Geomecha-nics, 2018, 18(10), 04018121. 20 Han T L, Chen Y S, Shi J P, et al. Chinese Journal of Rock Mechanics and Engineering. 2013, 32(S2), 3064(in Chinese). 韩铁林, 陈蕴生, 师俊平, 等. 岩石力学与工程学报, 2013, 32(S2), 3064. 21 Zhou B, Zhang D M, Xu J, et al. Coal Geology & Exploration, 2020, 48(4), 16(in Chinese). 周斌, 张东明, 许江, 等. 煤田地质与勘探, 2020, 48(4), 165. 22 Zhang Q S, Yang G S, Ren J X. Chinese Journal of Rock Mechanics and Engineering, 2003, 22(1), 30(in Chinese). 张全胜, 杨更社, 任建喜. 岩石力学与工程学报, 2003, 22(1), 30. 23 GB/T0266-2013, Standard for tests method of engineering rock masses, China Planning Press, China, 2013(in Chinese). GB/T50266-2013, 工程岩体试验方法标准, 中国计划出版社, 2013. 24 Xiao G Y, Chen X J, Wei C F, et al. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(S1), 3283(in Chinese). 肖桂元, 陈学军, 韦昌富, 等. 岩石力学与工程学报, 2016, 35(S1), 3283. 25 Wang Y L, Tang J X, Jiang J, et al. Journal of China Coal Society, 2017, 42(1), 227(in Chinese). 王艳磊, 唐建新, 江君, 等. 煤炭学报, 2017, 42(1), 227. 26 Liang Y L, Huo R K, Song Z P, et al. Journal of Building Engineering, 2023, 71, 106499. 27 Tan K X, Zhang Z R, Wang Z G. Acta Mineralogica Sinica, 1994, 14(3), 207(in Chinese). 谭凯旋, 张哲儒, 王中刚. 矿物学报, 1994, 14(3), 207. 28 Weng L Q, Yang H F, Wang F R, et al. Materials Reports, 2011, 25(S2), 425. 翁履谦, 杨海峰, 王逢睿, 等. 材料导报, 2011, 25(S2), 425. 29 Zhao Y Y, Zheng Y F. 2011, 27(2), 501(in Chinese). 赵彦彦, 郑永飞. 岩石学报, 2011, 27(2), 501. 30 Zhang Y X, Xue Y Q, Cao Y Q. Coal Geology & Exploration, 1996, 24(5), 34. 张永祥, 薛禹群, 曹玉清. 煤田地质与勘探, 1996, 24(5), 34. 31 Liang Y L, Huo R K, Song S S, et al. Journal of Building Engineering, 2024, 86, 108789. 32 Wyllie M R J, Gregory A R, Gardner L W. Geophysics, 1956, 21(129), 41. 33 Gardner G H F, Gardner L W, Gregory A R. Geophysics, 1974, 39(6), 770. 34 The Professional Standards Compilation Group of Peoples Republic of China. Specifications for rock tests in water conservancy and hydroelectric engineering:DL/T 5368-2007, China Water Power Press, China, 2007(in Chinese). 中华人民共和国行业标准编写组. 水电水利工程岩石试验规程:DL/T 5368-2007, 中国水利水电出版社, 2007. 35 Chen Y, Huang T F. Rock physics, Peking University Press, China, 2001, pp.49(in Chinese). 陈颙, 黄庭芳. 岩石物理学, 北京大学出版社, 2001, pp.49. |
|
|
|