METALS AND METAL MATRIX COMPOSITES |
|
|
|
|
|
Research Progress of Calculation Models for Carbon Partitioning During Quenching-Partitioning Process in High Strength and Toughness Steel |
LIU Yang, WANG Gang*, WANG Ling*, QI Pengyuan, YANG Jian, WANG Boquan, ZHENG Wei
|
School of Materials Science and Engineering, Yingkou Institute of Technology, Yingkou 115014, Liaoning, China |
|
|
Abstract Quenching-partitioning(QP) steel, as the typical representative of the third generation of advanced high strength steel, provides an important guarantee for automotive lightweight, improving energy efficiency and realizing carbon peak and carbon neutralization. In quenching-partitioning (QP) process, the initial microstructure (residual austenite+martensite) is formed during quenching, and the partitioning process is the key to retaining and stabilizing the residual austenite. In addition to carbon partitioning there are often some phenomena such as short-range diffusion of substitutional atoms, austenite/martensite interface migration, austenite/martensite transformation, austenite/bainite transformation and carbide precipitation occurring in the partitioning process of QP steel, which make it difficult to study the microstructure evolution and the carbon concentration distribution. On the basis of corresponding experiments, many calculation models have been put forward to explore the underlying mechanism of complex phenomena in the specific partitioning process. In this paper, the calculation models of carbon partitioning process in QP steel are reviewed from the following two perspectives: (1) the calculation models that are based on thermodynamics and dynamics, including the ideal CCE model, QP-PE model and QP-LE model with considering interface mobility, CCEθ model and QPT-LE model with considering carbide precipitation, the coupling model with considering bainite transformation and the coupling model with considering the simultaneous occurrence of multiple phenomena; (2) the adoption of phase field method to performing relevant calculation simulation. Finally, future research prospects for the calculation model for carbon partitioning are discussed.
|
Published: 25 April 2024
Online: 2024-04-28
|
|
Fund:Liaoning Science and Technology Joint Fund (2020-YKLH-26, 2021-YKLH-01). |
|
|
1 Hosseini N, Forouzan F, Vuorinen E. Materials Today Communications, 2022, 31, 103503. 2 Li W, Gia X Q, Jin X J. Acta Metallurgica Sinica, 2022, 58(4), 444(in Chinese). 李伟, 贾兴祺, 金学军. 金属学报, 2022, 58(4), 444. 3 Cheng X, Gui X L, Gao G H. Materials Reports, 2023, 37(7), 21070186(in Chinese). 程瑄, 桂晓露, 高古辉. 材料导报, 2023, 37(7), 21070186. 4 Ma T M, Yi H L, Lu H Z, et al. Strategic Study of CAE, 2009, 11(9), 20(in Chinese). 马图鸣, 易红亮, 路洪洲, 等. 中国工程科学, 2009, 11(9), 20. 5 Pierce D T, Coughlin D R, Clarke K D, et al. Acta Materialia, 2018, 151, 454. 6 Seo E J, Cho L, De Cooman B C, et al. Acta Materialia, 2016, 107, 354. 7 Seo E J, Cho L, Estrin Y, et al. Acta Materialia, 2016, 113, 124. 8 Allain S Y P, Geandier G, Hell J C, et al. Scripta Materialia, 2017, 131, 15. 9 Bleck W G, Guo X F, Ma Y. Steel Research International, 2017, 8(10), 1700218. 10 Liu L, He B B, Huang M X. Advanced Engineering Materials, 2018, 20(6), 1701083. 11 Kim B, Sietsma J, Santofimia M J. Materials & Design, 2017, 127, 336. 12 Soleimani M, Kalhor A, Mirzadeh H. Materials Science and Engineering: A, 2020, 795, 140023. 13 Edmond D V, He K, Rizzo F C, et al. Materials Science and Enginee-ring: A, 2006, 438-440, 25. 14 Speer J G, Edmonds D V, Rizzo F C, et al. Current Opinion in Solid State and Materials Science, 2004, 8(3-4), 219. 15 Koistinen D P, Marburger R E. Acta Metallurgica, 1959, 7(1), 59. 16 Hultgren A. ASM Transactions, 1947, 39, 915. 17 Hultgren A. Jernkontorets Annaler, 1951, 135, 403. 18 Kozeschnik E, Vitek J M. Calphad, 2000, 24(4), 495. 19 Speer J G, Matlock D K, De Cooman B C, et al. Acta Materialia, 2003, 51(9), 2611. 20 Clarke A J, Speer J G, Matlock D K, et al. Scripta Materialia, 2009, 61(2), 149. 21 Behera A K, Olson G B. Scripta Materialia, 2018, 147, 6. 22 Behera A K, Olson G B. The Journal of the Minerals, Metals & Materials Society, 2019, 71, 1375. 23 Santofimia M J, Zhao L, Sietsma J. Scripta Materialia, 2008, 59(2), 159. 24 Santofimia M J, Speer J G, Clarke A J, et al. Acta Materialia, 2009, 57(15), 4548. 25 Purdy G, Ågren J, Borgenstam A, et al. Metallurgical and Materials Transactions A, 2011, 42A(12), 3703. 26 Toji Y, Matsuda H, Herbig M, et al. Acta Materialia, 2014, 65, 215. 27 Dai Z B, Ding R, Yang Z G, et al. Acta Materialia, 2018, 144, 666. 28 Dai Z B, Wang X, He J G, et al. Metallurgical and Materials Transactions A, 2017, 48A(7), 3168. 29 Dai Z B, Yang Z G, Zhang C, et al. Acta Materialia, 2020, 200, 597. 30 Dai Z B, Ding R, Yang Z G, et al. Acta Materialia, 2018, 152, 288. 31 Toji Y, Miyamoto G, Rabbe D. Acta Materialia, 2015, 86, 137. 32 Hsu T Y, Xu Z Y. Materials Science Forum, 2007, 561-565, 2283. 33 Hsu T Y. International Heat Treatment and Surface Engineering, 2008, 2, 64. 34 Hsu T Y, Jin X J. Advanced steels, Springer, Berlin, Heidelberg, 2011, pp.67. 35 Hsu T Y, Jin X J, Rong Y H. Journal of Alloys and Compounds, 2013, 577(S1), S568. 36 Zhang J Z, Dai Z B, Zeng L Y, et al. Acta Materialia, 2021, 217, 117176. 37 Li Y, Chen S, Wang C C, et al. Acta Materialia, 2020, 188, 528. 38 Nishikawa A S, Santofimia M J, Sietsma J, et al. Acta Materialia, 2018, 142, 142. 39 Pohjonen A, Bahu S R, Visuri V V. Computational Materials Science, 2022, 209, 111413. 40 Takahama Y, Santofimia M, Mecozzi M G, et al. Acta Materialia, 2012, 60(6-7), 2916. 41 Mecozzi M G, Eiken J, Santofimia M J, et al. Computational Materials Science, 2016, 112, 245. |
|
|
|