INORGANIC MATERIALS AND CERAMIC MATRIX COMPOSITES |
|
|
|
|
|
Design of Anion Reversible Systems and Research Progress of Cathode Materials in Dual-ion Batteries |
PATIMAN Abudu1, HE Yitao2,*, BAI Xiang1, YIERXIATI Dilixiati1, LUO Xinze1, HE Xiaoyan1, YAN Xiuling1,*, LI Haijin2,*
|
1 Key Laboratory of Pollutant Chemistry and Environmental Treatment, School of Chemistry and Environmental Sciences, YiLi Normal University, Yining 835000, Xinjiang, China 2 School of Energy and Environment, Department of Energy and Power Engineering, Anhui University of Technology, Maanshan 243002, Anhui, China |
|
|
Abstract Dual ion battery (DIBs) is based on the working mechanism of storing cations and anions at the positive and negative electrodes, respectively, during the charging/discharging process. It has the advantages of high operating voltage, low cost and excellent safety, and has attracted more attention than lithium ion battery in the aspect of efficient energy storage. In this review, the basic energy storage principle of DIBs and the theoretical basis of anionic reversible system are systematically reviewed, and the latest progress of DIBs is included. The design types of reversible anionic pairs on DIBs positive electrode, the classification of graphite, the research progress of organic or metal-based layered positive electrode materials are introduced in detail. In addition, some strategies and prospects are put forward to promote the further development of DIBs in basic research and industrialization in the future.
|
Published: 25 January 2024
Online: 2024-01-26
|
|
Fund:National Natural Science Foundation of China (5220021063, 21972065, 21803002), the Natural Science Foundation of Xinjiang Province (2020D01C270), Natural Science Foundation of YiLi Normal University(2021YSYB084), and Research Group of Pollution Control and Orientation-functionalized Materials Design (CXZK2021002). |
|
|
1 Wang M, Tang Y. Advanced Energy Materials, 2018, 8, 1703320. 2 He S, Wang S, Chen H, et al. Journal of Materials Chemistry A, 2020, 8, 2571. 3 Zhang X, Tang Y, Zhang F, et al. Advanced Energy Materials, 2016, 6, 1502588. 4 Zhang E, Cao W, Wang B, et al. Energy Storage Materials, 2018, 11, 91. 5 Yang K, Liu Q, Zheng Y, et al. Angewandte Chemie-International Edition, 2021, 60, 6326. 6 Han X, Xu G, Zhang Z, et al. Advanced Energy Materials, 2019, 9, 1804022. 7 Rodríguez P, Jian Z, Waldenmaier P, et al. ACS Energy Letters, 2016, 1, 719. 8 Zhang M, Pei Y, Liu W, et al. Nano Energy, 2021, 81, 105643. 9 Yu A, Pan Q, Zhang M, et al. Advanced Energy Materials, 2020, 30, 2001440. 10 Gong Z, Yang Y. Energy & Environmental Science, 2011, 4, 3223. 11 Rana J, Stan M, Kloepsch R, et al. Advanced Energy Materials, 2014, 4, 1300998. 12 Park H, Min K, Park K. ACS Applied Materials & Interfaces, 2022, 14, 5168. 13 Yang Y, Wang J, Liu S, et al. Chemical Engineering Journal, 2022, 435, 134746. 14 Pendashteh A, Orayech B, Suhard H, et al. Energy Storage Materials, 2022, 46, 417. 15 Haniu Y, Nara H, Ahn S, et al. Journal of Materials Chemistry A, 2021, 9, 27459. 16 Shahjalal M, Roy P, Shams T, et al. Energy, 2022, 241, 122881. 17 Piątek J, Afyon S, Budnyak T, et al. Advanced Energy Materials, 2021, 11, 2003456. 18 Yang C, Chen J, Ji X, et al. Nature, 2019, 569, 245. 19 Rothermel S, Meister P, Schmuelling G, et al. Energy & Environmental Science, 2014, 7, 3412. 20 Placke T, Fromm O, Lux S, et al. Journal of Electrochemical Society, 2012, 159, A1755. 21 Li W, Ning Q, Xi X, et al. Advanced Materials, 2019, 31, 1804766. 22 Zhang C, Ma W, Han C, et al. Energy & Environmental Science, 2021, 14, 462. 23 Rodríguez P, Zhang L, Wrogemann J, et al. Advanced Energy Materials, 2020, 10, 2001256. 24 Gupta T, Kim A, Phadke S, et al. Journal of Power Sources, 2016, 305, 22. 25 Li H, Kurihara T, Yang D, et al. Energy Storage Materials, 2021, 38, 454. 26 Zhang Y, An Y, Yin B, et al. Journal of Materials Chemistry A, 2019, 7, 11314. 27 Cai S, Chu X, Liu C, et al. Advanced Materials, 2021, 33, 2007470. 28 Endo M, Kim C, Nishimura K, et al. Carbon, 2000, 38, 183. 29 Liang H, Hou B, Li W, et al. Energy & Environmental Science, 2019, 12, 3575. 30 Li P, Kim H, Myung S, et al. Energy Storage Materials, 2021, 35, 550. 31 Martin C, Genovese M, Louli A, et al. Joule, 2020, 4, 1296. 32 Roohi H, Gildeh S F, Ghauri K, et al. Ionics, 2020, 26, 1963. 33 Zhang L, Zhu X, Hu S, et al. Dalton Transactions, 2019, 48, 7809. 34 Giri B, Saini T, Kumbhakar S, et al. Dalton Transactions, 2020, 49, 10772. 35 Zhang M, Song X, Ou X, et al. Energy Storage Materials, 2019, 16, 65. 36 Zhang H, Guo G, Adenusi H, et al. Materials Today, 2022, 53, 162. 37 Kumar S, Bhauriyal P, Pathak B. Journal of Physical Chemistry C, 2019, 123, 23863. 38 Shpigel N, Malchik F, Levi M, et al. Energy Storage Materials, 2020, 32, 1. 39 Minami K, Masese T, Yoshii K, et al. New Journal of Chemistry, 2021, 45, 4921. 40 Seel J, Dahn J. Journal of Electrochemical Society, 2000, 147, 892. 41 Chan C, Lee P, Xu Z, et al. Electrochimica Acta, 2018, 263, 34. 42 Wu J, Wang X, Liu Q, et al. Nature Communications, 2021, 12, 5746. 43 Wu L, Wang Z, Dai P, et al. Chemical Science, 2022, 13, 4058. 44 Wang D, Zhang J, Dong Y, et al. New Carbon Materials, 2021, 36, 435. 45 Zhou H, Liu Y, Ren M, et al. Inorganic Chemistry Frontiers, 2022, 9, 1920. 46 Ma C, Hu Z, Song N, et al. Rare Metals, 2021, 40, 837. 47 Jh A, Xla B, Xs C, et al. EnergyChem, 2019, 1, 100004. 48 Heckmann A, Fromm O, Rodehorst U, et al. Carbon, 2018, 131, 201. 49 Wei C, Gong D, Xie D, et al. ACS Energy Letters, 2021, 6, 4336. 50 Wu X, Xu Y, Zhang C, et al. Journal of American Chemistry Society, 2019, 141, 6338. 51 Chen G, Zhang F, Zhou Z, et al. Advanced Energy Materials, 2018, 8, 1801219. 52 Alvarez T, Castro L, Guzmán G, et al. ACS Appl Energy Materials, 2021, 4, 295. 53 Jiang H, Han X, Du X, et al. Advanced Materials, 2022, 34, 2108665. 54 Yang H, Qin T, Zhou X, et al. Journal of Energy Chemistry, 2022, 71, 392. 55 Ikhe A, Seo J, Park W, et al. Journal of Power Sources, 2021, 506, 230261. 56 Zhang L, Wang H, Zhang X, et al. Advanced Functionl Materials, 2021, 31, 2010958. 57 Li H, Li J, Chen Z, et al. ChemElectroChem, 2021, 8, 3512. 58 Abbas G, Sonia F, Zafar Z, et al. Carbon, 2022, 186, 612. 59 Wang S, Xiao X, Fu C, et al. Journal of Materials Chemistry A, 2018, 6, 4313. 60 Wang S, Tu J, Xiao J, et al. J. Energy Chem, 2019, 28, 144. 61 Wang S, Xiao X, Zhou Y, et al. Electrochimica Acta, 2018, 282, 946. 62 Huang Z, Hou Y, Wang T, et al. Nature Communications, 2021, 12, 3106. 63 Dong S, Li Z, Rodríguez P, et al. Nano Energy, 2017, 40, 233. 64 Warshawsky I. Journal of Electrochemical Society, 1980, 127, 1324. 65 Heckmann A, Thienenkamp J, Beltrop K, et al. Electrochimica Acta, 2018, 260, 514. 66 Li Y, Lu Y, Adelhelm P, et al. Chemical Society Reviews, 2019, 48, 4655. 67 Guo Q, Kim K, Li S, et al. ACS Energy Letters, 2021, 6, 459. 68 Wang X, Salari M, Jiang D, et al. Nature Reviews Materials, 2020, 5, 787. 69 Kim K, Tang L, Mirabedini P, et al. Advanced Functional Materials, 2022, 32, 2112709. 70 Tan H, Zhai D, Kang F, et al. Carbon, 2021, 178, 363. 71 Dühnen S, Nölle R, Wrogemann J, et al. Journal of Electrochemical Society, 2019, 166, A5474. 72 Wang L, Peng M, Chen J, et al. ACS Nano, 2022, 16, 2877. 73 Feng X, Wu X, Chen X, et al. Energy Storage Materials, 2021, 42, 454. 74 Zhang Z, Ni Y, Avdeev M, et al. Electrochimica Acta, 2021, 365, 137376. 75 Fan J, Zhang Z, Liu Y, et al. Chemical Communications, 2017, 53, 6891. 76 Balabajew M, Reinhardt H, Bock N, et al. Electrochimica Acta, 2016, 211, 679. 77 Meister P, Schmuelling G, Winter M, et al. Electrochemical Communications, 2016, 71, 52. 78 Kravchyk K, Bhauriyal P, Piveteau L, et al. Nature Communications, 2018, 9, 4469. 79 Bhauriyal P, Mahata A, Pathak B. Physical Chemistry Chemical Phy-sics, 2017, 19, 7980. 80 Xiang L, Ou X, Wang X, et al. Angewandte Chemie-International Edition, 2020, 59, 17924. 81 Wang H, Yoshio M. Chemical Communications, 2010, 46, 1544. 82 Huang Y, Liang Z, Wang H. Chemical Communications, 2020, 56, 10070. 83 Aladinli S, Bordet F, Ahlbrecht K, et al. Electrochimica Acta, 2017, 231, 468. 84 Mohandas K, Sanil N, Noel M, et al. Carbon, 2003, 41, 927. 85 Li X, Wang Y, Chen Z, et al. Angewandte Chemie-International Edition, 2022, 61, e202113576. 86 Yang C, Chen J, Ji X, et al. Nature, 2019, 569, 245. 87 Yang C, Suo L, Borodin O, et al. Proceedings of National Academy of Sciences, 2017, 114, 6197. 88 Zhang Z, Hu X, Zhou Y, et al. Journal of Materials Chemistry A, 2018, 6, 8244. 89 Guo Q, Kim K, Jiang H, et al. Advanced Functional Materials, 2020, 30, 2002825. 90 Obrezkov F, Shestakov A, Vasil’ev S, et al. Journal of Materials Che-mistry A, 2021, 9, 2864. 91 Obrezkov F, Somova A, Fedina E, et al. Energy Technology, 2021, 9, 2000772. 92 Speer M, Kolek M, Jassoy J, et al. Chemical Communications, 2015, 51, 15261. 93 Ge J, Yi X, Fan L, et al. Journal of Energy Chemistry, 2021, 57, 28. 94 Zhu J, Li Y, Yang B, et al. Small, 2018, 14, 1801836. 95 Zhan C, Zeng X, Ren X, et al. Journal of Energy Chemistry, 2020, 42, 180. 96 Li C, Lao B, Li Z, et al. Energy Storage Materials, 2020, 32, 159. 97 Latha M, Vatsala R. Journal of the Electrochemical Society, 2019, 167, 070501. 98 Zhang M, Zhong J, Kong W, et al. Energy & Environmental Science, 2021, 4, 413. 99 Bachman J, Kavian R, Graham D, et al. Nature Communications, 2015, 6, 7040. 100 Xu S, Dai H, Zhu S, et al. eScience, 2021, 1, 60. 101 Li C, Xue J, Huang A, et al. Electrochimica Acta, 2019, 297, 850. 102 Fan L, Liu Q, Xu Z, et al. ACS Energy Letters, 2017, 2, 1614. 103 Zhang M, Zhong J, Zhu J, et al. Journal of Electroanalytical Chemistry, 2022, 909, 116155. 104 Poul M, Olga F, Sergej R, et al. Electrochimica Acta, 2017, 228, 18. 105 Zhu H, Zhang F, Li J, et al. Small, 2018, 14, 1703951. 106 傅宇. 中国专利, CN202210628474. 5, 2022. 107 Zhang F, Ji B, Tong X, et al. Advanced Energy Materials, 2016, 3, 1600605. 108 Wang J, Tu J, Chang C, et al. Journal of Power Sources, 2021, 492, 229674. 109 Wang P, Chen H, Li N, et al. Energy Storage Materials, 2018, 13, 103. 110 Wang Y, Zhang Y, Duan Q, et al. Journal of Power Sources, 2020, 471, 228466. 111 Zhou Z, Li N, Yang Y, et al. Advanced Energy Materials, 2018, 8, 1801439. 112 Li X, Wang Z, Duan X, et al. Electrochimica Acta, 2020, 363, 137229. |
|
|
|