INORGANIC MATERIALS AND CERAMIC MATRIX COMPOSITES |
|
|
|
|
|
Study of Sulfur Loaded in Honeycomb-Like Porous Carbon Materials and Energy Storage Performance in Lithium-Sulfur Battery |
KANG Xiaoya, HE Tianqi, ZHU Fuliang, RAN Fen*
|
State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, School of Materials Science & Engineering, Lanzhou University of Technology, Lanzhou 730050, China |
|
|
Abstract The further development of lithium sulfur battery is severely hindered by the insulation of elemental sulfur and its final product Li2S as well as the structural collapse caused by their density difference, so finding a suitable carrier material is an efficient strategy to address the above-mentioned problems. In this work, a honeycomb-like porous carbon is selected as the host material for the sulfur cathode, the sulfur is immobilized in the pores of porous carbon by conventional melt diffusion method, and porous carbon@sulfur composite is characterized by SEM, XRD, XPS and BET techniques. The results show that the sulfur was uniformly loaded in the carbon skeleton. Meanwhile, the high electrical conductivity and honeycomb-like structure of porous carbon not only provide an electronic conductive network for the sulfur, but also ensures the stability of the cathode. More importantly, the honeycomb structure gives some buffer space for the volume expansion of the sulfur cathode during the cycling process, which lessens the trouble of structural collapse. In addition, the abundant pores in the host material decrease the shuttling of polysulfides to some extent. Therefore, the specific capacity of porous carbon@sulfur composite can deliver 1 125.9 mAh/g at 0.1C during the first discharging and maintain 305.1 mAh/g after 300 cycles.
|
Published: 25 August 2024
Online: 2024-09-10
|
|
Fund:National Natural Science Foundation of China (51763014,52073133),Key Talent Project Foundation of Gansu Province. |
|
|
1 Yang Y, Zheng G Y, Cui Y. Chemical Society Reviews, 2013, 42(7), 3018. 2 Li C W. Journal of Chongqing Technology and Business University (Natural Science Edition), 2005, 22(3), 265(in Chinese). 李翠薇. 重庆工商大学学报(自然科学版), 2005, 22(3), 265. 3 Seh Z W, Sun Y M, Zhang Q F, et al. Chemical Society Reviews, 2016, 45(20), 5605. 4 Ye H L, Li Y G. InfoMat, 2022, 4(5), e12291. 5 Song Y Z, Cai W L, Kong L, et al. Advanced Energy Materials, 2019, 10(11), 1901075. 6 Yan Y Y, Cheng C, Zhang L, et al. Advanced Energy Materials, 2019, 9(18), 1900148. 7 Zhou S Y, Yang S, Cai D, et al. Advanced Science, 2022, 9(3), e2104205. 8 Xu H F, Hu R M, Zhang Y Z, et al. Energy Storage Materials, 2021, 43, 212. 9 Li X Y, Feng S, Zhao M, et al. Angewandte Chemie-International Edition, 2022, 61(7), e202114671. 10 Jin Z S, Zhao M, Lin T N, et al. Journal of Materials Chemistry A, 2020, 8(21), 10885. 11 Wang R, Yang J L, Chen X, et al. Advanced Energy Materials, 2020, 10(9), 1903550. 12 Liang Z W, Shen J D, Xu X J, et al. Advanced Materials, 2022, 34, 2200102. 13 Su H, Lu L Q, Yang M Z, et al. Chemical Engineering Journal, 2022, 429, 132167. 14 Chen H, Wu Z Z, Zheng M T, et al. Materials Today, 2022, 52, 364. 15 Wang M Q, Emre A E, Kim J Y, et al. Nature Communications, 2022, 13(1), 278. 16 Huang S, Huixiang E, Yang Y, et al. Journal of Materials Chemistry A, 2021, 9(12), 7458. 17 Luo D, Li C J, Zhang Y G, et al. Advanced Materials, 2021, 34(2), e2105541. 18 Hua W X, Li H, Pei C, et al. Advanced Materials, 2021, 33(38), e2101006. 19 Lei J, Fan X X, Liu T, et al. Nature Communications, 2022, 13(1), 202. 20 Yang Z, Zhao Z Y, Zhou H R, et al. ACS Applied Materials & Interfaces, 2021, 13(43), 51174. 21 Zou R, Liu W W, Ran F. InfoMat, 2022, 4(8), e12319. 22 Dai C L, Jin X T, Ma H Y, et al. Advanced Energy Materials, 2021, 11(14), 2003982. 23 Zhou Y X, Shi T Y, Zhao C Y, et al. Materials Reports, 2024, 38(1), 22060085(in Chinese). 周宇祥, 施天宇, 赵晨媛, 等. 材料导报, 2024, 38(1), 22060085. 24 Feng Y T, Zu L H, Yang S S, et al. Advanced Functional Materials, 2022, 32(40), 2207579. 25 Zhang J Y, Xu G B, Zhang Q, et al. Advanced Science, 2022, 9(22), 2201579. 26 Cui C J, Zhao Y N, Liu Y, et al. Materials Reports, 2023, 37 (5), 21080095(in Chinese). 崔春娟, 赵亚男, 刘跃, 等. 材料导报, 2023, 37 (5), 21080095. 27 Liu G H, Luo D, Gao R, et al. Small, 2020, 16(37), 2001089. 28 Li L G, Fan B, Zhao D K, et al. ChemElectroChem, 2021, 7(24), 4990. 29 Wang Z S, Shen J D, Ji S M, et al. Small, 2020, 16, 1906634. 30 Cha E, Patel M D, Park J, et al. Nature Nanotechnology, 2018, 13(4), 337. 31 Su Y S, Manthiram A. Nature Communications, 2012, 3(1), 1166. 32 Yang Z, Zhao Z Y, Zhou H R, et al. ACS Applied Materials&Interfaces, 2021, 13(43), 51174. 33 Feng L X, Yu P, Fu X W, et al. ACS Nano, 2022, 16(5), 7982. 34 Huang J Q, Zhuang T Z, Zhang Q, et al. ACS Nano, 2015, 9(3), 3002. 35 Li Z L, Xiao Z B, Wang S Q, et al. Advanced Functional Materials, 2019, 29(31), 1902322. 36 Li H F, Yang X W, Wang X M, et al. Nano Energy, 2015, 12, 468. 37 Wang Z S, Shen J D, Xu X J, et al. Small, 2022, 18, 2106640. |
|
|
|