Please wait a minute...
《材料导报》期刊社  2018, Vol. 32 Issue (9): 1469-1476    https://doi.org/10.11896/j.issn.1005-023X.2018.09.011
  材料综述 |
利用离子液体制备无机气凝胶的研究进展
张 震1,冯军宗1,姜勇刚1,刘 平2,张秋华2,卫荣辉2,陈 翔2,冯 坚1
1 国防科技大学新型陶瓷纤维及其复合材料重点实验室,长沙 410073;
2 广东埃力生高新科技有限公司,清远 513042
Progress in the Preparation of Inorganic Aerogels from Ionic Liquids
ZHANG Zhen1, FENG Junzong1, JIANG Yonggang1, LIU Ping2, ZHANG Qiuhua2, WEI Ronghui2, CHEN Xiang2, FENG Jian1
1 Science and Technology on Advanced Ceramic Fibers and Composites Laboratory, National University of Defense Technology, Changsha 410073;
2 Guangdong Alison Hi-Tech Co., Ltd, Qingyuan 513042
下载:  全 文 ( PDF ) ( 1431KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 气凝胶具有三维纳米多孔网络结构,独特的结构使它具有低密度、高比表面积和高孔隙率等性质以及低热导率、低介电常数和低声传播速率等性能,在隔热、介电、隔声、催化、吸附等领域具有广阔的应用前景。然而,溶剂-凝胶法作为目前制备气凝胶最成熟、应用最广的技术,需要使用大量的有机溶剂,严苛而危险的超临界干燥工艺进一步推高了成本,限制了气凝胶的大规模工业化生产和应用,因此,降低成本和在常压干燥条件下制备高比表面积的块状气凝胶是气凝胶产业急需解决的问题。   离子液体被称为21世纪的绿色溶剂,具有低蒸气压、低表面张力、高催化性和高溶解性等特殊性质。离子液体与气凝胶材料的发展几乎同步,但直到2000年两种材料才产生交集。离子液体作为模板剂具有微观结构导向作用,使纳米孔结构均一化,其不挥发性和低表面张力保证了老化和常压干燥过程中纳米孔结构不会因毛细管力而坍塌破坏,另外其催化作用可以缩短凝胶时间。因此,离子液体为常压干燥合成气凝胶提供了新的工艺路线。   目前,有关借助离子液体制备SiO2气凝胶、TiO2气凝胶、SiO2-TiO2复合气凝胶、炭气凝胶等无机气凝胶的探索均已展开,其中制备SiO2气凝胶的研究最多,涉及工艺、微观结构、掺杂和应用等方面。通过常压干燥可获得比表面积高达677 m2/g的块状气凝胶,通过选用不同的离子液体还可以控制纳米孔的微观形貌, 所得SiO2气凝胶产物在电化学、生物、吸附等领域有较高的应用潜力。利用离子液体替代有机溶剂可以使得到的TiO2气凝胶不经煅烧即含有锐钛矿相,通过金属原子Ag、Fe、Ge等掺杂改性,可进一步提高锐钛矿相的结晶度,提升其光催化性能。利用离子液体制得的SiO2-TiO2复合气凝胶具有一定强度和良好的光催化活性。此外,除在传统的溶胶-凝胶法中用作模板剂或催化剂外,离子液体还可作为新型的炭源用于制备炭气凝胶,即通过熔盐法高温炭化裂解离子液体“自上而下”直接制备。这种方法可以制备杂原子在原子水平上均匀分布的功能化炭气凝胶,无需制备有机气凝胶前驱物,极大缩短制备周期,并且炭气凝胶产物的比表面积相对更高,得到了科研界的广泛关注。   本文介绍了离子液体在气凝胶材料合成过程中的作用原理,归纳了借助离子液体制备前述几种重要的无机气凝胶的国际研究状况。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张 震
冯军宗
姜勇刚
刘 平
张秋华
卫荣辉
陈 翔
冯 坚
关键词:  离子液体  常压干燥  二氧化硅气凝胶  二氧化钛气凝胶  炭气凝胶    
Abstract: Aerogels have three dimensional nanoporous network structure and the unique structure endows them with the characteristics of low density, high specific surface area and high porosity, and the properties of low thermal conductivity, low dielectric constant and low transmission rate. Thus aerogels have found promising application in the fields of acoustic insulation, thermal insulation, dielectric materials, catalyts, adsorption and so on. However, sol-gel method, as the most mature and the most widely used aerogel fabrication technique, suffering the problems of excess use of hazardous organic solvent and severely dangerous and costly supercritical drying process, only has limited large-scale industrial production and application potential. Thus, reducing cost and preparing monolithic aerogels with high specific surface area under ambient pressure conditions are the most urgent subjects.   Ionic liquids, known as green solvents in the 21st century, have many exceptional properties such as low vapor pressure, low surface tension, high catalytic and high solubility. The development of ionic liquids and aerogels were almost simultaneous, but not until 2000 did two materials meet. Ionic liquids serving as template agents offer microstructure orientation effect, and homogenize the resultant pore structure. The nonvolatility and low surface tension of ionic liquid templates help to avoid capillary effect and consequently ensure the intactness of nanometer pore structure during aging and ambient pressure drying, and moreover, the catalytic effect of ionic liquids can shorten gel time. All of the above open up a new avenue to produce aerogels by ambient pressure drying with the assistance of ionic liquids.   By now, researchers have conducted extensive research on applying ionic liquids to the preparation of inorganic aerogels such as SiO2 aerogels, TiO2 aerogels, SiO2-TiO2 composite aerogels and carbon aerogels. Among them, SiO2 aerogels acquire the most research endeavors, from the perspectives of procedure, microstructure, doping and application, etc. The monolithic aerogels with specific surface area up to 677 m2/g and controllable (by adopting different ionic liquids) pore microstructure can be obtained through ambient pressure dying, and the resultant products have great electrochemical, biological and adsorptional application prospects. Ionic liquids instead of organic solvents can be used to synthesize TiO2 aerogels with anatase phase without calcination. Notably, through the doping modification of metal atoms, e.g. Ag, Fe, Ge, the degree of crystallinity of anatase phase can be further enhanced, thereby improving the aerogel’s photocatalytic performance. SiO2-TiO2 composite aerogels prepared by using ionic liquids display relatively high strength and favorable photocatalytic activity. Besides acting as template agent or catalyst in the conventional sol-gel process, ionic liquids can be used as a new type of carbon source in preparing carbon aerogels, i.e. the “top-to-bottom” direct fabrication by pyrolyzing ionic liquids through the molten salts approach. This method is capable to produce functionalized carbon aerogels with higher specific area, atomic level uniform distribution of the heteroatoms, and furthermore, can exempt the procedure from prepa-ring organic aerogel precursors.   This paper introduces the action mechanism of ionic liquids within the synthesis process of aerogels, and provide a comprehensive summary over the research status of applying ionic liquids to the fabrication of the above mentioned representative inorganic aerogels.
Key words:  ionic liquid    ambient pressure drying    silica aerogel    titania aerogel    carbon aerogel
出版日期:  2018-05-10      发布日期:  2018-07-06
ZTFLH:  TB32  
  TB34  
基金资助: 国家自然科学基金(51302317);湖南省自然科学基金(14JJ3008)
通讯作者:  冯坚:通信作者,1969年生,研究员,博士研究生导师,研究方向为纳米材料 E-mail:fengj@nudt.edu.cn   
作者简介:  张震:男,1993年生,硕士研究生,主要研究方向为纳米气凝胶及其复合材料 E-mail:zhangzhen12a@126.com
引用本文:    
张 震,冯军宗,姜勇刚,刘 平,张秋华,卫荣辉,陈 翔,冯 坚. 利用离子液体制备无机气凝胶的研究进展[J]. 《材料导报》期刊社, 2018, 32(9): 1469-1476.
ZHANG Zhen, FENG Junzong, JIANG Yonggang, LIU Ping, ZHANG Qiuhua, WEI Ronghui, CHEN Xiang, FENG Jian. Progress in the Preparation of Inorganic Aerogels from Ionic Liquids. Materials Reports, 2018, 32(9): 1469-1476.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.09.011  或          https://www.mater-rep.com/CN/Y2018/V32/I9/1469
1 Soleimani Dorcheh A, Abbasi M H. Silica aerogel:Synthesis, pro-perties and characterization[J].Journal of Materials Processing Technology,2008,199:10.
2 Hu H, Zhao Z B, Wan W B,et al. Ultralight and highly compressible graphene aerogels[J].Advanced Materials,2013,25:2219.
3 Feng J Z, Feng J, Jiang Y G,et al. Ultralow density carbon aerogels with low thermal conductivity up to 2 000 ℃[J].Materials Letters,2011,65:3454.
4 Pierre A C, Pajonk G M. Chemistry of aerogels and their applications[J].Chemical Reviews,2002,102(11):4243.
5 Shen J, Wang J, Gan L H,et al. Preparation of SiO2 aerogels with sol-gel method and the study of their properties[J].Journal of Inorganic Materials,1995(1):69(in Chinese).
沈军,王珏,甘礼华,等.溶胶-凝胶法制备SiO2气凝胶及其特性研究[J].无机材料学报,1995(1):69.
6 Hu J G, Chen Q Y, Li J,et al. Preparation of TiO2 aerogels by ambient pressure drying[J].Journal of Inorganic Materials,2009,24(4):685(in Chinese).
胡久刚,陈启元,李洁,等.常压干燥法制备TiO2气凝胶[J].无机材料学报,2009,24(4):685.
7 Jiang Y G, Feng J, Geng A K,et al. Preparation technology of SiO2 aerogel with low density and high specific surface area at ambient pressure[J].Rare Metal Materials and Engineering,2009,38(z2):1034(in Chinese).
姜勇刚,冯坚,耿安康,等.常压制备低密度高比表面积SiO2气凝胶的工艺研究[J].稀有金属材料与工程,2009,38(z2):1034.
8 Ge N L, Zhang D, Wei H B,et al. Bifunctional ionic liquid as template in the preparation of mesoporous silica via a sol-gel method[J].Journal of Functional Materials,2014,45(20):20068(in Chinese).
葛倪林,张迪,魏海兵,等.双功能性离子液体溶胶-凝胶法制备介孔二氧化硅[J].功能材料,2014,45(20):20068.
9 Tan X, Gao H Y,Yang M, et al. Preparation of fiber reinforced composite silica aerogel[J].Journal of Functional Materials,2014,45(16):16139(in Chinese).
谭僖,高鸿毅,杨穆,等.纤维复合二氧化硅气凝胶材料的制备[J].功能材料,2014,45(16):16139.
10 Wu X D, Cui S, Wang L,et al. Advance in research of high temperature resistant aerogel used as insulation material[J].Materials Review A:Review Papers,2015,29(5):102(in Chinese).
吴晓栋,崔升,王岭,等.耐高温气凝胶隔热材料的研究进展[J].材料导报:综述篇,2015,29(5):102.
11 Bourbigou H O, Magna L, Morvan D. Ionic liquids and catalysis: Recent progress from knowledge to applications[J].Applied Catalysis A:General,2010,373:1.
12 Sebastian Werner, Marco Haumann, Peter Wasserscheid. Ionicli-quids in chemical engineering[J].Annual Review of Chemical and Biomolecular Engineering,2010,1:203.
13 Chen T, Jiang W H, Zhang X J, et al. An ionic liquid-assisted hydrothermal synthesis of CeO2 nanorods[J].Journal of Inorganic Materials,2015,30(3):325.
14 Zhang L J, Di L B, Li Y C, et al. Preparation and properties of Co-doped TiO2 with assistance of ionic liquid[J].Journal of Inorganic Materials,2014,29(8):801(in Chinese).
张丽娟,底兰波,李燕春,等.离子液体中Co掺杂介孔TiO2可见光催化剂的制备及性能研究[J].无机材料学报,2014,29(8):801.
15 Wang K, Zhang L J, Xu Z J, et al. Effects of pH on the structure of titania prepared via ionic liquid-assisted hydrothermal method[J].Journal of Inorganic Materials,2014,29(2):131(in Chinese).
王凯,张丽娟,徐志坚,等.pH对离子液体辅助水热制备介孔二氧化钛结构的影响[J].无机材料学报,2014,29(2):131.
16 Katharina Wendler, Martin Brehm, Friedrich Malberg, et al. Short time dynamics of ionic liquids in AIMD-based power spectra[J].Journal of Chemitry Theory and Computation,2012,8:1570.
17 Lee J S, Wang X Q, Luo H M, et al. Fluidic carbon precursors for formation of functional carbon under ambient pressure based on ionic liquids[J].Advanced Materials,2010,22:1004.
18 Dai S, Ju Y H, Gao H J,et al. Preparation of silica aerogel using ionic liquids as solvents[J].Chemical Communications,2000,3(3):243.
19 Zhou Y, Schattka J H, Markus Antonietti. Room-temperature ionic liquids as template to monolithic mesoporous silica with wormlike pores via a sol-gel nanocasting technique[J].Nano Letters,2004,4(3):477.
20 Liu H L, Han Y K, Zhang H, et al. Preparation and properties of modified silica aerogel/polymethyl methacrylate emulsion[J].Mate-rials Review,2016,30(S2):357(in Chinese).
刘洪丽,韩亚坤,张海,等.改性硅气凝胶/聚甲基丙烯酸甲酯乳液的制备与性能研究[J].材料导报,2016,30(专辑28):357.
21 Zhu Q, Liu H H.Fabrication and composite oil-water separation performance for superhydrophobic sponge and silica powder[J].Journal of Functional Materials,2017,48(2):2074(in Chinese).
祝青,刘慧慧.超疏水海绵和氧化硅的制备及复合油水分离性能研究[J].功能材料,2017,48(2):2074.
22 Ali Karout, Alain C Pierre. Porous texture of silica aerogels made with ionic liquids as gelation catalysts[J].Journal of Sol-Gel Science and Technology,2009,49:364.
23 Xu F. Hydrophobicity silica aerogels synthesized at ambient pressre[D].Dalian:Dalian Polytechnic University,2011(in Chinese).
徐飞.常压制备疏水性SiO2气凝胶的研究[D].大连:大连工业大学,2011.
24 Yan H R. Research onsilica aerogels synthesized with ionic liquids at ambient pressure[D].Dalian:Dalian Polytechnic University,2010(in Chinese).
闫海瑞.常压下利用离子液体制备SiO2气凝胶的研究[D].大连:大连工业大学,2010.
25 Wu C M, Lin S Y, Chen H L. Structure of a monolithic silica aerogel prepared from a short-chain ionic liquid[J].Microporous and Mesoporous Materials,2012,156:189.
26 Wu C M, Lin S Y, Kao K Y,et al. Self-organization of a hydrophilic short-chain ionic liquid confined within a hydrophobic nanopore[J].Journal of Physics and Chemistry C,2014,118:17764.
27 Ivanova M, Kareth S, Petermann M. Supercritical carbon dioxide and imidazolium based ionic liquids applied during the sol-gel process as suitable candidates for the replacement of classical organic solvents[J].Journal of Supercritical Fluids,2018,132:76.
28 Kris Anderson, Silvia Cortinas Fernandez, Christopher Hardacre,et al. Preparation of nanoparticulate metal catalysts in porous supports using an ionic liquid route; hydrogenation and C-C coupling[J].Inorganic Chemistry Communications,2004,7:73.
29 Steven J Craythorne, Alan R Crozier, Fabio Lorenzini, et al. The preparation of silica entrapped homogeneous hydrogenation catalysts by conventional and ionic liquid mediated sol-gel routes[J].Journal of Organometallic Chemistry,2005,690:3518.
30 Chen Y T, Chuang Y C, Su J H, et al. High discharge capacity solid composite polymer electrolyte lithium battery[J].Journal of Power Sources,2011,196:2802.
31 Kamal Mohamed Seeni Meera, Rajavelu Murali Sankar, Sellamuthu N Jaisankar,et al. Mesoporous and biocompatible surface active silica aerogel synthesis using choline formate ionic liquid[J].Colloids and Surfaces B: Biointerfaces,2011,86:292.
32 Yen K L, Chen Y C, Jiang K J, et al. Three-dimensional arrayed amino aerogel biochips for molecular recognition of antigens[J].Biomaterials,2011,32:7347.
33 Anderson S B, Jessica A L, Matheus A O S,et al. The novel mesoporous silica aerogel modified with protic ionic liquid for lipase immobilization[J].Química Nova,2016,39(4):415.
34 Kyesang Yoo, Hyeok Choi, Dionysios D. Dionysiou. Ionic liquid assisted preparation of nanostructured TiO2 particles[J].Chemical Communications,2004,17(17):2000.
35 Sun D, Yu C, Shao G,et al. Ionic liquid assisted the preparation of anatase TiO2 with high specific surface area and porous structure[J].Digest Journal of Nanomaterials and Biostructures,2014,9(4):1451.
36 Wu R X. Preparation and performance study of TiO2 aerogel in ionic liquid[D].Dalian:Dalian Polytechnic University,2012(in Chinese).
吴瑞雪.离子液体中TiO2气凝胶的制备及性能研究[D].大连:大连工业大学,2012.
37 Wu X Y. Preparation and properties of noble metal modified TiO2 aerogel use ionic liquid as template[D].Dalian:Dalian Polytechnic University,2013(in Chinese).
吴绪洋.离子液体中贵金属改性TiO2气凝胶的制备及性能研究[D].大连:大连工业大学,2013.
38 Wang N N. Preparation of modified TiO2 and its photocatalytic performance[D].Dalian:Dalian Polytechnic University,2014(in Chinese).
王宁宁.改性二氧化钛气凝胶的制备及光催化性能研究[D].大连:大连工业大学,2014.
39 Sun D Y. Preparation of rare earth modified TiO2 areagels andits photocatalytic performance[D].Dalian:Dalian Polytechnic University,2015(in Chinese).
孙大吟.稀土改性TiO2气凝胶的制备及其光催化性能研究[D].大连:大连工业大学,2015.
40 Zhou B B, Ma Y C, Yu C L, et al. The synthesis of Ce3+-doped TiO2 aerogel and its photocatalysis ability[J].Journal of Dalian Polytechnic University,2017,36(2):112(in Chinese).
周彬彬,马英冲,于春玲,等.Ce3+掺杂TiO2气凝胶的制备及其光催化活性[J].大连工业大学学报,2017,36(2):112.
41 Li Yanchun. Preparation and photocatalytic performance of TiO2-SiO2 composite aerogels in ionic liquids[D].Dalian:Dalian Polytechnic University,2012(in Chinese).
李艳春.离子液体中TiO2-SiO2复合气凝胶的制备与光催化性能[D].大连:大连工业大学,2012.
42 Ning L Y. Preparation and properties of Ag doped SiO2-TiO2 aergogels via ambient pressure drying[D].Dalian:Dalian Polytechnic University,2013(in Chinese).
宁丽媛.Ag掺杂的SiO2-TiO2气凝胶的常压制备及性能[D].大连:大连工业大学,2013.
43 Zhu M L. Copper-doped TiO2/SiO2 composite aerogel synthesized by ambient pressure and its photocatalytic activity[D].Dalian:Dalian Polytechnic University,2014(in Chinese).
朱美玲.Cu掺杂SiO2-TiO2复合气凝胶常压制备及光催化性能研究[D].大连:大连工业大学,2014.
44 Yang X, Liu X E, Ma J F, et al. Fabrication and application of carbon aerogel derived from biomass materials[J].Materials Review A:Review Papers,2017,31(4):45(in Chinese).
杨喜,刘杏娥,马建锋,等.生物质基碳气凝胶制备及应用研究[J].材料导报:综述篇,2017,31(4):45.
45 Sun K, Zhang X H, Yuan J J. The application and development of novel carbon materials in supercapacitor energy storage technology[J].Journal of Functional Materials,2018,49(2):2043(in Chinese).
孙凯,张希华,袁建军.新型碳材料在超级电容器储能技术中的应用与发展[J].功能材料,2018,49(2):2043.
46 Yang H M, Cui X J, Deng Y Q,et al. Ionic liquid templated preparation of carbon aerogels based on resorcinol-formaldehyde: Properties and catalytic performance[J].Journal of Material Chemistry,2012,22:21852.
47 Sun G H, Su F Y, Xie L J,et al. Synthesis of mesoporous carbon aerogels based on metal-containing ionic liquid and its application for electrochemical capacitors[J].Journal of Solid State Electrochemistry,2016,20:1813.
48 Liu X, Yan M F, Liu Z F,et al. Effect of reactant concentrations on the structure properties of the new carbon aerogels[J].Materials Review B:Research Papers,2014,28(6):75(in Chinese).
刘璇,闫美芳,刘振法,等.反应物浓度对新型碳气凝胶结构性能的影响[J].材料导报:研究篇,2014,28(6):75.
49 Karina Elumeeva, Jiawen Ren, Markus Antonietti,et al. High surface iron/cobalt-containing nitrogen-doped carbon aerogels as non-precious advanced electrocatalysts for oxygen reduction[J].ChemElectroChem,2015,2(4):584.
50 Nina Fechler, Tim-Patrick Fellinger, Markus Antonietti. “Salttemplating”: A simple and sustainable pathway toward highly porous functional carbons from ionic liquids[J].Advanced Materials,2013,25:75.
51 Elumeeva K, Fechler N, Fellinger T P,et al. Metal-free ionic liquid-derived electrocatalyst for high-performance oxygen reduction in acidic and alkaline electrolytes[J].Materials Horizons,2014,1:588.
[1] 李思盈, 周超. 海泡石纤维增强二氧化硅气凝胶的制备及性能[J]. 材料导报, 2024, 38(19): 23030233-9.
[2] 刘会茹, 张苗苗, 徐智策. 离子液体凝胶催化剂在合成乙酸正龙脑酯中的应用[J]. 材料导报, 2024, 38(11): 23080135-7.
[3] 赵文姝, 梁耕源, 雷博文, 贺雍律, 肖颖, 邢素丽, 靳力, 张鉴炜. 通过共混改性提升PEDOT:PSS热电性能的研究进展[J]. 材料导报, 2023, 37(7): 22010168-10.
[4] 石佳建, 李宝河, 息剑峰, 刘丹, 刘帅, 王桂玲. 离子液体调控材料物性的研究进展[J]. 材料导报, 2023, 37(13): 21050195-8.
[5] 颜宇豪, 郭洋, 汪李超, 侯成义, 张青红, 李耀刚, 秦宗益, 王宏志. 基于离子液体电解质的柔性电化学O2传感器性能研究[J]. 材料导报, 2023, 37(12): 21040216-5.
[6] 王延杰, 赵世界, 盛俊杰, 汝杰, 赵春, 李树勇. MWCNT/Nafion/MWCNT复合材料的湿度传感性能研究[J]. 材料导报, 2022, 36(20): 21060183-9.
[7] 张尧, 毕恩兵, 茹鹏斌, 陈汉. 一种咪唑基离子液体钝化制备的高效反式钙钛矿太阳能电池[J]. 材料导报, 2022, 36(2): 21010190-6.
[8] 周海云, 何明基, 张磊, 王红强, 梁华彬, 杨健华, 钟新仙. 以Nafion和离子液体作为软模板合成聚苯胺及其在超级电容器中的应用[J]. 材料导报, 2022, 36(18): 21050119-6.
[9] 范龄元, 张梅, 郭敏. 二氧化硅气凝胶的制备、氨基改性及低温吸附CO2性能研究进展[J]. 材料导报, 2022, 36(15): 20120056-8.
[10] 宋文琦, 霍文娟, 杨金腾, 罗晨, 訾帅, 刘玉坤, 历亚星, 钱立伟. 氨丙基咪唑离子液体修饰纤维素气凝胶吸附剂对刚果红的清除研究:高性能与吸附机理[J]. 材料导报, 2022, 36(12): 21030276-7.
[11] 应宗耀, 郑煜铭, 邵再东, 程璇. 胺基改性二氧化硅气凝胶的制备及对刚果红的吸附性能[J]. 材料导报, 2021, 35(20): 20005-20010.
[12] 李隆隆, 李良军, 冯军宗, 姜勇刚, 冯坚. 炭气凝胶力学性能增强方法研究进展[J]. 材料导报, 2021, 35(19): 19041-19048.
[13] 陈定宁, 沈昊宇, 成瑾瑾, 胡美琴. “枣糕状”结构杂多酸离子液体负载磁性复合材料的制备及超声脱硫的催化性能[J]. 材料导报, 2021, 35(12): 12181-12189.
[14] 黄青武, 吴越, 宋武林, 丁雨葵. 碳纤维的电纺制备及结构表征[J]. 材料导报, 2020, 34(Z1): 164-168.
[15] 李绘, 张燕, 张玉琰, 宋风娟, 郦雪, 王浩宇, 曹晓强, 吕宪俊. [BMIM][BF4]-MnO2@SS阳极的制备及对氧氟沙星废水的降解[J]. 材料导报, 2020, 34(6): 6029-6032.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed