Please wait a minute...
《材料导报》期刊社  2018, Vol. 32 Issue (8): 1344-1351    https://doi.org/10.11896/j.issn.1005-023X.2018.08.026
  材料研究 |
阻燃型玻纤增强尼龙10T复合材料的热氧老化行为及热降解动力学
王蒙, 宋海硕, 郭建兵
贵州大学材料与冶金学院,贵阳 550025
Thermo-oxidative Aging and Thermal Degradation Kinetics of the Flame Retardant Glass Fiber Reinforced Nylon 10T Composites
WANG Meng, SONG Haishuo, GUO Jianbing
College of Materials and Metallurgy, Guizhou University, Guiyang 550025
下载:  全 文 ( PDF ) ( 2317KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 研究了不同热氧老化温度(160 ℃、200 ℃和 240 ℃)和时间(0~50 d)对溴化环氧树脂/Sb2O3协效阻燃短玻纤增强尼龙10T复合材料(PA10T/GF/FR)的热氧老化行为以及热降解动力学的影响。采用力学性能测试、SEM、DMA和TGA分析对老化前后复合材料的动静态力学、微观形貌以及热降解行为进行研究,并使用Kissinger和Flynn-Wall-Ozawa两种方法计算了复合材料的热降解活化能。结果表明:老化过程中基体树脂降解分子量降低,纤维与基体界面性能恶化,复合材料力学性能下降;160 ℃老化过程部分PA10T分子链发生交联反应,储能模量和玻璃化转变温度(Tg)增加,200 ℃和 240 ℃下Tg先上升后下降,老化后期树脂分子链以降解为主;活化能计算表明160 ℃老化50 d后复合材料热稳定性提升,200 ℃老化50 d以及240 ℃老化30 d后,复合材料结构破坏严重,热降解行为变化显著。此外,阻燃剂的添加能够提升老化试样的热稳定性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王蒙
宋海硕
郭建兵
关键词:  热氧老化  PA10T  热降解  性能    
Abstract: In this paper, the thermal-oxidative aging effects on the thermal oxidation behaviors and thermal degradation kine-tics of flame retardant short-glass-fiber reinforced PA10T composites (PA10T/GF/FR) were investigated with different aging temperatures of 160 ℃, 200 ℃ and 240 ℃ for 0—50 days. The static and dynamic mechanical properties, microstructure and thermal degradation behaviors were investigated by using mechanical properties analysis, DMA, SEM and TGA,respectively. Kissinger and Flynn-Wall-Ozawa methods were utilized to calculate the thermal degradation activation energy of PA10T/GF/FR.The results de-monstrated that during thermal-oxidative aging the molecular weight of PA10T resin declined and the interfacial properties between fiber and matrix deteriorated, resulting in the decrease of mechanical properties. The micro-crosslinking reaction happened during 160 ℃ aging process and thus storage modulus increased as well as glass transition temperature (Tg). However, the molecular degradation dominated in the later phase of 200 ℃ and 240 ℃ aging,which resulted in the Tg increase first and decrease after. The calculation of activation energy exhibited that the thermal stability of the 50 d aged sample at 160 ℃ was improved, while after 50 d aging at 200 ℃ or 30 d at 240 ℃, the composite structure was destroyed seriously, and the thermal degradation behaviors changed significantly. What’s more, the flame retardant can enhance the thermal stability of aged samples.
Key words:  thermo-oxidative aging    PA10T    thermal degradation    property
出版日期:  2018-04-25      发布日期:  2018-05-11
ZTFLH:  TQ323.6  
基金资助: 国家自然科学基金(51003088;51602067);贵州省优秀青年科技人才培养对象专项资金(黔科合人字[2015]26号);贵州省高层次创新型人才培养项目(黔科合人才[2015]4039;黔科合人才[2016]5667号)
通讯作者:  郭建兵:通信作者,男,1979年生,研究员,主要从事聚合物结构与性能研究 E-mail:guojianbing_1015@126.com   
作者简介:  王蒙:男,1991年生,硕士研究生,主要从事复合材料的高性能化研究 E-mail:wm910625@163.com
引用本文:    
王蒙, 宋海硕, 郭建兵. 阻燃型玻纤增强尼龙10T复合材料的热氧老化行为及热降解动力学[J]. 《材料导报》期刊社, 2018, 32(8): 1344-1351.
WANG Meng, SONG Haishuo, GUO Jianbing. Thermo-oxidative Aging and Thermal Degradation Kinetics of the Flame Retardant Glass Fiber Reinforced Nylon 10T Composites. Materials Reports, 2018, 32(8): 1344-1351.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.08.026  或          https://www.mater-rep.com/CN/Y2018/V32/I8/1344
1 Novitsky T F, Lange C A, Mathias L J, et al. Eutectic melting behavior of polyamide 10,T-co-6,T and 12,T-co-6,T copolyterephthalamides[J].Polymer,2010,51:2417.
2 Zhang C, Huang X, Zeng X, et al. Fluidity improvement of semia-romatic polyamides: Modification with oligomers[J].Journal of Applied Polymer Science,2014,131:5621.
3 Braga R A, Jr M P. Analysis of the mechanical and thermal properties of jute and glass fiber as reinforcement epoxy hybrid composites[J].Materials Science & Engineering C Materials for Biological Applications,2015,56:269.
4 Park C S, Lee K J, Nam J D, et al. Crystallization kinetics of glass fiber reinforced PBT composites[J].Journal of Applied Polymer Science,2015,78:576.
5 Cerrada M L, Benavente R, Pérez E. Effect of short glass fiber on structure and mechanical behavior of an ethylene-1-octene copolymer[J].Macromolecular Chemistry & Physics,2015,202:2686.
6 Fu S Y, Lauke B, Mäder E, et al. Tensile properties of short-glass-fiber- and short-carbon-fiber-reinforced polypropylene composites[J].Composites Part A Applied Science & Manufacturing,2000,31:1117.
7 Laun H M. Orientation effects and rheology of short glass fiber-reinforced thermoplastics[J].Colloid and Polymer Science,1984,262:257.
8 Yang W, Song L, Hu Y, et al. Enhancement of fire retardancy performance of glass-fibre reinforced poly(ethylene terephthalate) composites with the incorporation of aluminum hypophosphite and melamine cyanurate[J].Composites Part B Engineering,2011,42:1057.
9 Liu Y, Deng C L, Zhao J, et al. An efficiently halogen-free flame-retardant long-glass-fiber-reinforced polypropylene system[J].Polymer Degradation & Stability,2011,96:363.
10 Poisson N, Maazouz A, Sautereau H, et al. Curing of dicyandiamide epoxy resins accelerated with substituted ureas[J].Journal of Applied Polymer Science,1998,69:2487.
11 Vahabi H, Sonnier R, Ferry L. Effects of ageing on the fire beha-viour of flame-retarded polymers: A review[J].Polymer Internatio-nal,2015,64:313.
12 Richaud E, Colin X, Monchy-Leroy C, et al. Polyethylene stabilization against thermal oxidation by a trimethylquinoleine oligomer[J].Polymer Degradation & Stability,2009,94:410.
13 Acevedo M E, Quijada R, Vallette M C. Thermal oxidation of me-tallocene ethylene-1-olefin copolymer films during one year oven aging[J].Polymer Degradation & Stability,2008,93:1947.
14 Okamba-Diogo O, Richaud E, Verdu J, et al. Molecular and macromolecular structure changes in polyamide 11 during thermal oxidation-Kinetic modeling[J].Polymer Degradation & Stability,2015,120:76.
15 Zuo X, Zhang K, Lei Y, et al. Influence of thermooxidative aging on the static and dynamic mechanical properties of long-glass-fiber-reinforced polyamide 6 composites[J].Journal of Applied Polymer Science,2014,131:1023.
16 Song H, Zhou D, Guo J. Thermal-oxidative aging effects on the properties of long glass fiber reinforced polyamide 10T composites[J].Polymer Composites,DOI:10.1002/pc.24174.
17 Zuo X L,Shao H J,Wu B,et al.Effects of thermal-oxidative aging on the static and dynamic mechanical properties and thermal degradation kinetic of flame retardant long-glass-fiber reinforced nylon 6 composites[J].Polymer Materials Science & Engineering,2014,30(6):54(in Chinese).
左晓玲,邵会菊,吴斌,等.热氧老化对阻燃型长玻纤增强尼龙6静动态力学及降解动力学的影响[J].高分子材料科学与工程,2014,30(6):54.
18 Shu Y, Ye L, Yang T. Study on the long-term thermal-oxidative aging behavior of polyamide 6[J].Journal of Applied Polymer Science,2010,110:945.
19 Zhang D, He M, Qin S, et al. Rheology characterization, dynamic mechanical, thermal, and mechanical properties of LGF/TPU/PBT/PTW composites[J].Polymer Composites,2016,DOI:10.1002/pc.24001.20 Tao Z, Wang Y, Li J, et al. Fabrication of long glass fiber reinforced polyacetal composites: Mechanical performance, microstructures, and isothermal crystallization kinetics[J].Polymer Composites,2014,36:1826.
21 Zuo X, Shao H, Zhang D, et al. Effects of thermal-oxidative aging on the flammability and thermal-oxidative degradation kinetics of tris(tribromophenyl) cyanurate flame retardant PA6/LGF compo-sites[J].Polymer Degradation & Stability,2013,98:2774.
22 Kissinger H E. Reaction kinetics in differential thermal analysis[J].Analytical Chemistry,1957,29:1702.
23 Flynn J H, Wall L A. A quick, direct method for the determination of activation energy from thermogravimetric data[J].Journal of Polymer Science Part B Polymer Letters,1966,4:323.
[1] 童汇, 谢建龙, 张志谋, 郭忻, 喻万景, 郭学益, 黄承焕. 富锂锰基正极材料研究进展[J]. 材料导报, 2025, 39(3): 23080074-18.
[2] 程东海, 张夫庭, 陶玄宇, 余超, 龚浩, 李海涛, 王德, 熊震宇. 稀土元素对钛合金激光焊接头组织及性能的影响[J]. 材料导报, 2025, 39(3): 23060020-5.
[3] 温强, 李向成, 花银群, 关庆丰, 蔡杰. 强流脉冲电子束表面改性技术及其在热障涂层改性中的研究进展[J]. 材料导报, 2025, 39(3): 23090070-11.
[4] 薛赞, 晋玺, 毛周朱, 兰爱东, 王大雨, 乔珺威. 热机械处理提高Cr47Ni33Co10Fe10多组元共晶合金力学性能[J]. 材料导报, 2025, 39(3): 23120100-6.
[5] 卞宏友, 柳金生, 刘伟军, 张广泰, 姚佳彬, 邢飞. 激光沉积修复GH738/K417G合金时效热处理组织性能分析[J]. 材料导报, 2025, 39(3): 23110265-6.
[6] 刘晓楠, 张春晓, 王世合, 张高展, 毛继泽, 曹少华, 刘国强. 养护制度对添加纳米SiO2超高性能混凝土动静态力学性能的影响[J]. 材料导报, 2025, 39(2): 23070188-7.
[7] 王艳, 李伊岚, 杨子凡, 常天风, 孙琳琳. OPC-SAC复合胶凝体系对超高性能混凝土性能的影响[J]. 材料导报, 2025, 39(2): 23120218-7.
[8] 杨淑雁, 徐宁阳. 多因素复合环境下钢筋与混凝土黏结性能研究进展[J]. 材料导报, 2025, 39(2): 23100224-10.
[9] 景宏君, 张超伟, 高萌, 丁仁红, 李毅民, 康明珂, 周子涵, 朱韶峰. 骨架密实型水泥稳定煤矸石级配设计与性能研究[J]. 材料导报, 2025, 39(2): 22040252-7.
[10] 周祎伟, 段海涛, 李健, 马利欣, 李文轩, 尤锦鸿, 贾丹. 外加磁场对摩擦副材料摩擦磨损及抗腐蚀性能影响的研究进展[J]. 材料导报, 2025, 39(2): 23110090-19.
[11] 曹雷刚, 侯鹏宇, 杨越, 蒙毅, 刘园, 崔岩. AlCoCrFeNix高熵合金高温热处理微观组织演变及力学性能[J]. 材料导报, 2025, 39(2): 23120247-7.
[12] 李朋娟, 邹振羽, 黄鹏飞, 金鑫, 吴晓雨, 李晓丽. N/O/P共掺杂三聚氰胺基多孔碳材料的制备及储锌性能研究[J]. 材料导报, 2025, 39(2): 23100113-7.
[13] 裴海华, 赵建伟, 郑家桢, 张贵才, 张菅, 蒋平. 改性纳米锂皂石强化高温泡沫调驱性能研究[J]. 材料导报, 2025, 39(2): 22110070-5.
[14] 赵佳薇, 陈浩霖, 罗倪, 刘振国. 卷对卷技术制备钙钛矿太阳能电池的研究进展[J]. 材料导报, 2025, 39(1): 24030057-17.
[15] 王丕, 宋琛, 董东东, 曾德长, 刘太楷, 文魁, 毛杰, 刘敏. 多孔Fe24Cr金属支撑体厚度对SOFC性能的影响[J]. 材料导报, 2025, 39(1): 23110193-7.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed