Please wait a minute...
《材料导报》期刊社  2018, Vol. 32 Issue (8): 1276-1282    https://doi.org/10.11896/j.issn.1005-023X.2018.08.014
  材料研究 |
SiO2/MoS2复合纳米基润滑油在镁合金冷轧中的摩擦学性能及润滑机理
谢红梅1, 蒋斌2, 彭程1, 潘复生2
1 长江师范学院机械与电气工程学院,重庆 408100;
2 重庆大学材料科学与工程学院,重庆大学国家镁合金工程技术研究中心,重庆 400044
Tribological Properties and Lubricant Mechanisms of SiO2/MoS2 Hybrid Nanolubricants in Magnesium Alloys Cold Rolling
XIE Hongmei1, JIANG Bin2, PENG Cheng1, PAN Fusheng2
1 College of Mechanical and Electrical Engineering, Yangtze Normal University, Chongqing 408100;
2 College of Materials Scienceand Engineering, National Engineering Research Center for Magnesium Alloys, Chongqing University, Chongqing 400044
下载:  全 文 ( PDF ) ( 2794KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 镁合金在轧制过程中通常采用铝合金轧制液,甚至进行无润滑轧制。轧制过程中无润滑油会导致轧后板材表面质量差、能耗高,而铝合金轧制液通常采用含氯、硫、磷等元素的有机化合物作为添加剂,此类添加剂不容易分解,废液的排放会对环境造成一定污染。基于此,本工作采用不同比例的SiO2和MoS2纳米颗粒复合加入EOT5#机械油中,在双辊轧机上研究两种纳米颗粒复合比例对AZ31镁合金冷轧过程中轧制力和轧后板材表面质量的影响。采用场发射扫描电镜(FESEM)和X射线光电子能谱仪(XPS)对SiO2/MoS2复合纳米基润滑油润滑条件下轧后板材表面形貌和成分进行了分析,探讨了SiO2/MoS2复合纳米基润滑油的协同润滑机理。结果表明,SiO2和MoS2纳米颗粒在基础油中添加质量分数之比为0.25∶0.75时具有最佳的润滑性能。SiO2/MoS2复合纳米基润滑油优良的润滑性能降低了镁合金轧制过程中的轧制力,改善了轧后板材的表面质量。分析认为,不同形貌和润滑机理的SiO2和MoS2纳米颗粒共同作用是实现协同润滑的关键因素。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
谢红梅
蒋斌
彭程
潘复生
关键词:  SiO2/MoS2复合纳米基润滑油  镁合金  冷轧  摩擦学特性    
Abstract: Currently, there are no suitable lubricants for the cold rolling process of Mg alloy. Occasional, the lubricants used for Al alloy rolling is used or even skip the lubricants. Cold rolling process without lubricants will lead to poor surface quality of pro-ducts and high energy consumption. The application of conventional oil-based lubricant in Al alloy rolling processes relies heavily on sulphur, chlorine and phosphorous-containing additives. These additives cause negative effects on the environment even at low concentrations during the disposal of waste fluids. Based on this, AZ31 Magnesium alloy sheets were processed by cold rolling lubricated with different SiO2/MoS2 mixing ratios hybrid nanolubricants. The cold rolling performance was investigated by measuring rolling force as well as the surface roughness of the sheets. The morphology and composition of surface were characterized by means of field emission scanning electron microscope (FESEM) and X-ray photoelectron spectrum (XPS), and the synergistic lubrication mechanism of SiO2/MoS2 hybrid nanolubricants was discussed. The results indicated that the optimal SiO2/MoS2 mixing ratio in the base oil was 0.25∶0.75. The excellent lubrication properties of the SiO2/MoS2 hybrid nanolubricant effectively reduced the rolling force and improved the surface quality of sheets during cold rolling process, compared with those of pure nanolubricants and neat oil without nanoparticles tested in the same conditions. The synergistic effect in the SiO2/MoS2 combinations may be explained in terms of the micro-cooperation of various nanoparticles with different shapes and lubrication mechanisms.
Key words:  SiO2/MoS2 hybrid nanolubricant    magnesium alloys    cold-rolling    tribological properties
出版日期:  2018-04-25      发布日期:  2018-05-11
ZTFLH:  TG502.16  
基金资助: 国家自然科学基金(51531002);重庆市教委科技项目(KJ1601203);长江师范学院青年基金(2016XJQN31);长江师范学院引进人才科研启动费(2017KYQD41);涪陵区科委科技计划项目(FLKW,2017ABA1013)
通讯作者:  蒋斌:通信作者,男,1975年生,教授,博士研究生导师,主要从事金属塑性加工成形研究 E-mail:jiangbinrong@cqu.edu.cn   
作者简介:  谢红梅:女,1983年生,博士,讲师,主要从事金属材料摩擦磨损及润滑研究 E-mail:xiehongmei@yznu.cn
引用本文:    
谢红梅, 蒋斌, 彭程, 潘复生. SiO2/MoS2复合纳米基润滑油在镁合金冷轧中的摩擦学性能及润滑机理[J]. 《材料导报》期刊社, 2018, 32(8): 1276-1282.
XIE Hongmei, JIANG Bin, PENG Cheng, PAN Fusheng. Tribological Properties and Lubricant Mechanisms of SiO2/MoS2 Hybrid Nanolubricants in Magnesium Alloys Cold Rolling. Materials Reports, 2018, 32(8): 1276-1282.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.08.014  或          https://www.mater-rep.com/CN/Y2018/V32/I8/1276
1 Xu Guofu, Duan Yulu, Qian Jian, et al. Microstructure, mechanical properties and corrosion properties of friction stir welded Al-Zn-Mg-Sc-Zr alloy[J].The Chinese Journal of Nonferrous Metals,2017,27(2):225(in Chinese).
徐国富,段雨露,钱健,等.Al-Mg-Mn-Sc-Zr合金搅拌摩擦焊接头显微组织、力学性能及腐蚀性能[J].中国有色金属学报,2017,27(2):225.
2 Chen Qiaowang, Tang Aitao, Xu Tingyi, et al. High performance cast magnesium rare-earth alloys:Retrospect and prospect[J].Materials Review A:Review papers,2016,30(9):1(in Chinese).
陈巧旺,汤爱涛,许婷熠,等.高性能铸造稀土镁合金的发展[J].材料导报:综述篇,2016,30(9):1.
3 Li Zhenliang, Liu Fei, Yuan Aiping, et al. Effects of rolling defor-mation on texture and LPSO phase of spray-deposited magnesium alloys containing Nd[J].Acta Metallurgica Sinica,2016,52(8):938(in Chinese).
李振亮,刘飞,袁爱萍,等.轧制变形对喷射沉积含Nd镁合金织构及LPSO相的影响[J].金属学报,2016,52(8):938.
4 Huang W J, Du C H, Li Z F, et al. Tribological characteristics of magnesium alloy using N-containing compounds as lubricating additives during sliding[J].Wear,2006,260:140.
5 Huang W J, Fu Y, Wang J, et al. Effect of chemical structure of borates on the tribological characteristics of magnesium alloy during sliding[J].Tribology International,2005,38:775.
6 Xia Y Q, Jia Z F, Jia J H. Advanced tribology[M].Berlin:Springer Berlin Heidelberg,2010.
7 Tang Z L, Li S H. A review of recent developments of friction modifiers for liquid lubricants (2007-present)[J].Current Opinion in Solid State & Materials Science,2014,18:119.
8 Li Z P, Li X F, Zhang Y W, et al. Tribological study of a highly hydrolytically stable phenylboronic acid ester containing benzothiazolyl in mineral oil[J].Applied Surface Science,2014,308:91.
9 Hu Kunhong, Xu Yong, Xu Yufu, et al. Tribological properties of MoS2 lubricants with different morphologies in an ionic liquid[J].Tribology,2015,32(2):167(in Chinese).
胡坤宏,徐勇,徐玉福,等.不同形态的二硫化钼润滑剂在离子液体中的摩擦学性能[J].摩擦学学报,2015,32(2):167.
10 Du Pengfei, Chen Guoxu, Song Shiyuan, et al. Preparation and tribological properties of Ni-doped muscovite composite particles as a lubricant additive for lithium grease[J].Tribology,2017,37(1):19(in Chinese).
杜鹏飞,陈国需,宋世远,等.镍掺杂白云母复合粉体的制备及其作为润滑脂添加剂的摩擦学性能[J].摩擦学学报,2017,37(1):19.
11 Sayuti M, Sarhan A A D, Hamdi M. An investigation of optimum SiO2 nanolubrication parameters in end milling of aerospace Al6061-T6 alloy[J].International Journal of Advanced Manufacturing Technology,2012,67:833.
12 Hu K H, Liu M, Wang Q J, et al. Tribological properties of molybdenum disulfide nanosheets by monolayer restacking process as additive in liquid paraffin[J].Tribology International,2009,42:33.
13 Kogovšek J, Remškar M, Mrzel A, et al. Influence of surface roughness and running-in on the lubrication of steel surfaces with oil containing MoS2 nanotubes in all lubrication regimes[J].Tribology International,2013,61:40.
14 Mosleh M, Atnafu N D, Belk J H, et al. Modification of sheet metal forming fluids with dispersed nanoparticles for improved lubrication[J].Wear,2009,267:1220.
15 Kalin M, Kogovšek J, Kova J, et al. The formation of tribofilms of MoS2 nanotubes on steel and DLC-coated surfaces[J].Tribology Letters,2014,55:381.
16 Xie H M, Jiang B, He J J, et al. Lubrication performance of MoS2 and SiO2 nanoparticles as lubricant additives in magnesium alloy-steel contacts[J].Tribology International,2016,93:63.
17 Johny Tannous F D, Ime` Ne Lahouij, Thierry Le Mogne, et al. Understanding the tribochemical mechanisms of IF-MoS2 nanoparticles under boundary lubrication[J].Tribology Letters,2011,41:55.
18 Hu K H, Huang F, Hu X G, et al. Synergistic effect of nano-MoS2 and anatase nano-TiO2 on the lubrication properties of MoS2/TiO2 nano-clusters[J].Tribology Letters,2011,43:77.
19 Zhang Y B, Li C H, Jia D Z, et al. Experimental evaluation of the lubrication performance of MoS2/CNT nanofluid for minimal quantity lubrication in Ni-based alloy grinding[J].International Journal of Advanced Manufacturing Technology,2015,99:19.
20 Xu Y F, Peng Y B, Dearn K D, et al. Synergistic lubricating beha-viors of graphene and MoS2 dispersed in esterified bio-oil for steel/steel contact[J].Wear,2015,342-343:297.
[1] 凌子涵, 王利卿, 张震, 赵占勇, 白培康. 镁合金电弧增材技术基本工艺及工艺因素影响综述[J]. 材料导报, 2024, 38(7): 22090013-9.
[2] 卢慧扬, 林金保, 刘惠民, 王炳权, 李一豪, 陈巽. 镁合金轧制边裂损伤模型的研究进展[J]. 材料导报, 2024, 38(24): 23110051-8.
[3] 钟丽萍, 路迢迢, 孙林超, 张梅, 王亮亮, 王永建. 镁合金多向锻造技术的研究现状与展望[J]. 材料导报, 2024, 38(23): 23070200-11.
[4] 夏二立, 叶拓, 邱飒蔚, 郭鹏程, 吴远志, 李落星. 不同加载路径和应变速率下挤压Mg-8.0Al-0.1Mn镁合金的力学响应行为[J]. 材料导报, 2024, 38(22): 24060132-8.
[5] 叶拓, 邱飒蔚, 夏二立, 郭鹏程, 吴远志, 李落星. 不同加载路径下挤压WE43镁合金的高速冲击力学响应及本构模型[J]. 材料导报, 2024, 38(20): 24050146-9.
[6] 张娜娜, 李全安, 陈晓亚, 陈培军, 谭劲峰. 高性能镁合金轧制成形研究进展[J]. 材料导报, 2024, 38(2): 22080125-9.
[7] 任东亭, 王文权, 张新戈, 杜文博, 朱胜. 镁合金基体超音速等离子喷涂Al-Al2O3复合涂层组织与耐腐蚀性能研究[J]. 材料导报, 2024, 38(16): 22120140-7.
[8] 程春龙, 陈正, 陈长玖, 柳力晨, 乐启炽. 镁合金表面高温氧化膜CO2矿化处理研究[J]. 材料导报, 2024, 38(16): 23040159-6.
[9] 计鸿鑫, 任伟杰, 蒋先贤, 杜文宇, 孙静娜, 黄华贵. 镁合金板材弯曲回弹预测与控制研究进展[J]. 材料导报, 2024, 38(15): 23080183-7.
[10] 肖雯心, 王叶, 马凯, 代朝能, 裴三略, 王丹芊, 王敬丰. 镁合金表面化学转化涂层研究进展[J]. 材料导报, 2024, 38(12): 23010121-12.
[11] 龙飞, 刘瞿, 朱艺星, 周梦然, 陈高强, 史清宇. 搅拌摩擦加工调控Mg-5Zn-0.6Zr合金耐蚀性的研究[J]. 材料导报, 2024, 38(10): 23020077-6.
[12] 安凌云, 常成功, 康迪菘, 王钊, 孟雷超, 彭建洪. 镁合金微弧氧化膜在三种饱和盐溶液中的耐蚀性研究[J]. 材料导报, 2023, 37(7): 21070250-10.
[13] 谭钦文, 邓黎鹏, 易润华, 程东海, 李东阳. Ni中间层镁/钛异种材料电阻点焊接头组织与性能[J]. 材料导报, 2023, 37(7): 21090077-4.
[14] 孙彬, 高圣伦, 郝明欣, 曹光明, 李志峰. 小压下冷轧对热轧带钢氧化铁皮氢气还原动力学的影响[J]. 材料导报, 2023, 37(4): 21090067-6.
[15] 蔡达, 王立世, 胡心彬. AA5052铝合金/AZ31B镁合金搅拌摩擦焊接头的腐蚀行为研究[J]. 材料导报, 2023, 37(4): 21040318-7.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed