Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (8): 1-5    https://doi.org/10.11896/j.issn.1005-023X.2017.08.001
  材料研究 |
Er3+/Yb3+掺杂NaGd(WO4)2粉体的制备与发光性能*
于晓晨, 张丹丹, 李哲, 王高凯, 高孟磊, 段理, 蒋自强, 王新刚, 赵鹏
长安大学材料科学与工程学院, 西安 710064
Preparation and Luminescence Property of Er3+ and Yb3+ Co-doped NaGd(WO4)2 Nanocrystal
YU Xiaochen, ZHANG Dandan, LI Zhe, WANG Gaokai, GAO Menglei, DUAN Li, JIANG Ziqiang, WANG Xingang, ZHAO Peng
School of Materials Science and Engineering, Chang’an University, Xi’an 710064
下载:  全 文 ( PDF ) ( 1646KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用水热法成功制备了Er3+/Yb3+双掺杂的NaGd(WO4)2纳米粉体,研究了不同络合剂、水热温度对样品形貌和结构的影响。测量了不同Er3+掺杂浓度样品的可见上转换和近红外发射光谱。结果表明:在980 nm LD激发下,可观测到样品强烈的绿色上转换发光,对应Er3+2H11/24I15/2(530 nm)和4S3/24I15/2(552 nm)跃迁,以及较弱的红色上转换和近红外发光,分别对应Er3+4F9/24I15/2(656 nm)和4I13/24I15/2(1 532 nm)跃迁。且随着Er3+掺杂浓度的增加,样品的上转换红绿光和1.54 μm附近的近红外光均呈现出先增大后减小的趋势。样品的激发和发射光谱显示,在378 nm处的激发峰最强,对应Er3+4I15/24G11/2能级跃迁,最强发射峰位于552 nm。根据泵浦功率与发光强度的关系可以得出,红光和绿光的发射主要为双光子吸收过程,但红光还包含了一定的单光子吸收成分。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
于晓晨
张丹丹
李哲
王高凯
高孟磊
段理
蒋自强
王新刚
赵鹏
关键词:  铒(Ⅲ)离子  镱(Ⅲ)离子  NaGd(WO4)2  水热法  发光    
Abstract: The Er3+/Yb3+ co-doped NaGd(WO4)2 powder were synthesized by the hydrothermal method. The effects of different complexing agents and hydrothermal temperature on morphology and structure of the samples were studied. The visible and near infrared emission spectra of the co-doped NaGd(WO4)2 powders with various Er3+ ion concentrations were measured. The spectroscopic results show intense green emission bands, weak red emission and near infrared emission bands for the co-doped samples located at 530 nm, 552 nm, 656 nm and 1 532 nm under 980 nm LD excitation, which correspond to the 2H11/2/4S3/24I15/2,4F9/24I15/2 and 4I13/24I15/2 level transition of Er3+, respectively. With the increase of Er3+ concentration, the intensities of the upconversion and near infrared emission show a trend of increasing first and then decreasing. The most intense excitation and emission peaks are centered at 378 nm and 552 nm. According to the relationship between exciting power and luminous intensity, the red light and green light all belong to two-photon absorption processes, but the red light also contains a certain single photon absorption component.
Key words:  erbium(Ⅲ) ion    ytterbium(Ⅲ) ion    NaGd(WO4)2    hydrothermal method    luminescence
出版日期:  2017-04-25      发布日期:  2018-05-02
ZTFLH:  O482  
基金资助: 陕西省自然科学基金(2013JQ6020;2014JQ6220);中央高校基本科研业务费专项基金(2014G1311092);国家大学生创新创业训练计划(201510710091;201610710228);国家自然科学基金(51102023)
作者简介:  于晓晨:女,1982年生,博士,副教授,研究方向为光电材料与器件 E-mail:xcyu@chd.edu.cn
引用本文:    
于晓晨, 张丹丹, 李哲, 王高凯, 高孟磊, 段理, 蒋自强, 王新刚, 赵鹏. Er3+/Yb3+掺杂NaGd(WO4)2粉体的制备与发光性能*[J]. 《材料导报》期刊社, 2017, 31(8): 1-5.
YU Xiaochen, ZHANG Dandan, LI Zhe, WANG Gaokai, GAO Menglei, DUAN Li, JIANG Ziqiang, WANG Xingang, ZHAO Peng. Preparation and Luminescence Property of Er3+ and Yb3+ Co-doped NaGd(WO4)2 Nanocrystal. Materials Reports, 2017, 31(8): 1-5.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.08.001  或          https://www.mater-rep.com/CN/Y2017/V31/I8/1
1 Downing E, Hesselink L, Ralston J, et al. A three-color, solid-state, three-dimensional display [J]. Science,1996,273(5279):1185.
2 Chen G Y, Zhang Y G, Somesfalean G, et al. Two-color upconversion in rare-earth-ion-doped ZrO2 nanocrystals [J]. Appl Phys Lett,2006,89(16):163105.
3 Wang S,Cui C E, et al. Preparation of red long afterglow luminescent material Sr3Al2O6∶Eu2+, Dy3+ by orthogonal design method [J].J Chongqing Institute Technol: Nat Sci Ed,2009,23(1):174(in Chinese).
王森,崔彩娥,等.正交设计法优化红色长余辉发光材料Sr3Al2O6∶Eu2+,Dy3+的制备工艺[J]. 重庆工学院学报:自然科学版,2009,23(1):174.
4 Yu X C,Hao A B,Liu B,et al.Luminescent properties of Er3+/Yb3+ co-doped phosphate glass ceramics [J].Mater Rev:Res,2013,27(12):25(in Chinese).
于晓晨, 郝爱斌, 刘波,等. Er3+/Yb3+共掺磷酸盐玻璃陶瓷的发光性质研究 [J]. 材料导报:研究篇,2013,27(12):25.
5 Mahalingam V, Thirumalai J. Photoluminescence, Judd-ofelt analysis and photometric characterization of Eu3+, activated Ca0.5Gd-(WO4)2, red phosphor [J]. Mater Sci Mat Electron,2016,27(9):1.
6 Zhang G, Song F, Ming C, et al. Photoluminescence properties and pump-saturation effect of Er3+/Yb3+ co-doped Y2Ti2O7, nanocrystals [J].J Lumin,2012,132(3):774.
7 Ivaturi A, Macdougall S K W, Martínrodríguez R, et al. Optimizing infrared to near infrared upconversion quantum yield of β-NaYF4∶Er3+ in fluoropolymer matrix for photovoltaic devices [J]. Appl Phys,2013,114(1):013505.
8 Liao J,Qiu B,Lai H. Synthesis and luminescence properties of Tb3+∶NaGd(WO4) 2 novel green phosphors [J].J Lumin,2009,129(129):668.
9 Wang J W, Mei Y, Tan T Y, et al.Effects of Yb3+/Er3+ doping ratio on upconversion branching ratio of BaTiO3∶Yb3+, Er3+ nanocrystal [J]. Chin J Rare Earths,2015,33(1):24(in Chinese).
王绩伟, 梅勇, 谭天亚, 等. Yb3+/Er3+掺杂比例对BaTiO3∶Yb3+,Er3+纳米晶上转换发光分支比的影响 [J]. 中国稀土学报,2015,33(1):24.
10 Huang J H, Gong X H, Chen Y J, et al. Polarized spectral properties of Er3+, ions in NaGd(WO4)2 crystal [J]. Appl Phys B,2007,89(1):73.
11 Xia Z, Zhou W, Du H, et al. Synthesis and spectral analysis of Yb3+/Tm3+/Ho3+-doped Na0.5Gd0.4WO4 phosphor to achieve white upconversion luminescence [J]. Mater Res Bull,2010,45(9):1199.
12 Yu X, Gao M, Li J, et al. Near infrared to visible upconversion emission in Er3+/Yb3+ co-doped NaGd(WO4)2 nanoparticles obtained by hydrothermal method [J].J Lumin,2014,154(154):111.
13 Li H,Yang K S,Qi N,et al. The preparation and luminescent pro-perties of Yb3+/Tm3+ doped NaY(WO4)2 nanocrystals [J].J Chinese Inorg Chem,2012,28 (2):221(in Chinese).
李慧,杨魁胜,祁宁,等. Yb3+/Tm3+掺杂的NaY(WO4)2纳米晶的制备及发光特性 [J]. 无机化学学报,2012,28(2):221.
14 Faure N, Borel C, Couchaud M, et al. Optical properties and laser performance of neodymium doped scheelites CaWO4 and NaGd-(WO4)2[J]. Appl Phys B,1996,63(6):593.
15 You H Y,Liao J S,Wen H R,et al. Photoluminescent properties of KGd (WO4)2∶Eu3+ red phosphor prepared by sol-gel method [J].Chin J Rare Earths,2011,29(2):178(in Chinese).
游航英, 廖金生, 温和瑞,等. 溶胶-凝胶法合成KGd(WO4)2∶Eu3+红色荧光粉及其发光性质的研究 [J]. 中国稀土学报,2011,29(2):178.
16 Haiyan D U,Lan Y,Xia Z,et al. Upconversion luminescence of Yb3+/Ho3+/Er3+ /Tm3+ co-doped KGd(WO4)2 powders [J]. Rare Earths,2010,28(5):697.
17 Chang S L, Aleksandrovsky A, Molokeev M, et al. Microwave sol-gel synthesis and upconversion photoluminescence properties of CaGd2(WO4)4∶Er3+/Yb3+, phosphors with incommensurately modulated structure [J]. Solid State Chem,2015,228:160.
18 Song F, Han L, Tan H, et al. Spectral performance and intensive green upconversion luminescence in Er3+/Yb3+-codoped NaY-(WO4)2 crystal [J]. Opt Commun,2006,259(1):179.
19 Yang K S,Bai Xu,Gao Y M,et al. Preparation and luminescence properties of ZnWO4∶Er3+, Yb3+ nanorods [J].J Inorg Chem,2010,26(6):1078(in Chinese).
杨魁胜,白旭,高艳敏,等. ZnWO4∶Er3+,Yb3+纳米棒的制备及发光性能 [J]. 无机化学学报,2010,26(6):1078.
20 De la Rosa E, Salas P,Desirena H,et al.Strong green upconversion emission in ZrO2∶Yb3+-Ho3+ nanocrystals[J].Appl Phys Lett,2005,87:241912.
21 Song F, Han L, Tan H, et al. Spectral performance and intensive green upconversion luminescence in Er3+/Yb3+-codoped NaY-(WO4)2 crystal [J]. Opt Commun,2006,259(1):179.
[1] 路正楠, 张鹏, 盛扬, 孙一新, MarkBradley, 张嵘. 鲁米诺自发光在聚氨酯光敏剂介导光动力治疗中的应用[J]. 材料导报, 2025, 39(1): 23110275-7.
[2] 甘晓明, 苏玉仙, 应文伟, 王建峰, 刘力, 周晓峰, 温世鹏. 稀土上转换发光材料的设计及在光动力治疗中的应用研究进展[J]. 材料导报, 2024, 38(8): 22080243-12.
[3] 张理元, 张菁菁, 吴娜, 沈如倩. 氟化对钛锂离子筛制备及性能的影响[J]. 材料导报, 2024, 38(18): 22090255-8.
[4] 罗文柳, 杨玲, 叶懋, 欧阳竑, 许积文, 唐纳. (K0.5Na0.5)NbO3-(Ca0.5Sm0.5)(Mg0.5Nb0.5)O3铁电陶瓷的光致介电响应与光致发光[J]. 材料导报, 2024, 38(18): 23040126-7.
[5] 涂盛辉, 钟荣福, 张超, 刘桉如, 吴文彬, 杜军. ZIF-8@TiO2复合材料的制备及光催化性能[J]. 材料导报, 2024, 38(16): 23030150-6.
[6] 罗宁, 高凤雨, 陈都, 张辰骁, 段二红, 赵顺征, 易红宏, 唐晓龙. CeMn复合氧化物的制备及氯苯催化氧化性能[J]. 材料导报, 2024, 38(16): 23050133-9.
[7] 蔡心杰, 徐亦冬, 王玉全, 武金婷. 采用持久发光材料为内部光源的光催化复合材料研究进展[J]. 材料导报, 2024, 38(15): 23030157-10.
[8] 林坚, 张松林, 王悦安, 孙浩, 聂钰昌, 陈德睢. 氧化镍空穴材料在Ⅱ-Ⅵ族量子点电致发光器件中的应用进展[J]. 材料导报, 2024, 38(14): 22100205-8.
[9] 刘维赛, 陈晓怡, 智文科, 王旭泉, 王飞. 镧系金属有机框架化合物在发光传感检测领域的研究进展[J]. 材料导报, 2023, 37(5): 21030231-12.
[10] 黄兵, 刘萍. 金属网格柔性透明导电薄膜研究进展[J]. 材料导报, 2023, 37(5): 21030214-12.
[11] 王达浩, 谢凤鸣, 魏怀鑫, 胡英元, 赵鑫. 双苯磺酰基苯类延迟荧光材料的合成及电致发光性质[J]. 材料导报, 2023, 37(4): 21060007-5.
[12] 卓明鹏, 俞燕君, 丁灵奕, 陈伟凡, 廖良生. 稀土发光配合物及其在有机发光二极管中的应用[J]. 材料导报, 2023, 37(3): 21060045-10.
[13] 裴胤昌, 莫胜鹏, 解庆林, 陈南春. 红辉沸石两步水热制备高品质X型分子筛及其高效吸附Cd2+、Ni2+性能研究[J]. 材料导报, 2023, 37(24): 22050310-9.
[14] 孙慧慧, 周子吉, 曹文, 王群, 周忠华, 黄悦. 玻璃表面梯度多孔减反射膜层的水热制备及水刻蚀剂添加Na2HPO4对膜层结构的影响[J]. 材料导报, 2023, 37(22): 22060210-7.
[15] 陈昊翔, 李伟华. 自感知发光涂层在腐蚀监测中的研究进展[J]. 材料导报, 2023, 37(2): 21050151-10.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed