Please wait a minute...
材料导报  2017, Vol. 31 Issue (1): 10-17    https://doi.org/10.11896/j.issn.1005-023X.2017.01.002
  材料综述 |
溶胶-凝胶法制备铜锌锡硫材料的研究进展
韩 贵,陆金花,王 敏,李丹阳
扬州大学化学化工学院,扬州 225002
Materials of Cu2ZnSnS4 (CZTS) Prepared by Sol-Gel Method:A Review
HAN Gui, LU Jinhua, WANG Min, LI Danyang
College of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225002
下载:  全 文 ( PDF ) ( 1625KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 四元硫化物铜锌锡硫(CZTS)是一种新型薄膜太阳电池材料,具有锌黄锡矿结构,呈p型导电性,带隙约为1.5 eV,光学吸收系数高于104 cm-1,这些特性与太阳光谱相匹配。基于上述原因,CZTS薄膜是一种有望能低成本、可规模化开发利用的新型薄膜太阳电池材料。简要阐述了CZTS性质及其薄膜太阳能电池的器件结构,详细介绍了溶胶-凝胶方法制备CZTS薄膜及其相应器件效率的研究进展。最后,总结了此方法制备CZTS薄膜及其相关电池性能难以突破的关键技术问题,并提出了有效的改进措施,对CZTS薄膜太阳电池未来的研究进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
韩 贵
陆金花
王 敏
李丹阳
关键词:  铜锌锡硫  太阳能电池  溶胶-凝胶法  效率  性能    
Abstract: A quaternary chalcogenide-based compound Cu2ZnSnS4 (CZTS) is a novel material for thin film solar cell, posses-sing kesterite structure, p-type conductivity, a band gap energy of about 1.5 eV and an absorption coefficient of higher than 104 cm-1, which match well with the solar spectrum. Based on the above reasons, CZTS thin film is expected to be a new material for thin film solar cell, which can lower the cost and be developed and utilized in large scale. The property and device structure of CZTS thin film solar cell are elaborated. In addition, the preparation of CZTS thin film by sol-gel method and the research progress in the corresponding device performance are also investigated in detail. Finally, the key strategies of this technique, as well as the effective improvement measure are pointed out, and the future study direction of CZTS thin film solar cells is proposed.
Key words:  Cu2ZnSnS4    solar cells    sol-gel method    efficiency    performance
出版日期:  2017-01-10      发布日期:  2018-05-02
ZTFLH:  O649.4  
  TB43  
  TB333  
  TM23  
  TN304.2  
基金资助: 科研启动金(5010/137010161);扬州大学优势学科(081301)
作者简介:  韩贵:男,1979年生,博士,副教授,主要从事光电转换材料方面的研究 E-mail: hangui@yzu.edu.cn 陆金花:女,硕士研究生,主要从事新能源材料的研究 E-mail:544643705@qq.com
引用本文:    
韩 贵, 陆金花, 王 敏, 李丹阳. 溶胶-凝胶法制备铜锌锡硫材料的研究进展[J]. 材料导报, 2017, 31(1): 10-17.
HAN Gui, LU Jinhua, WANG Min, LI Danyang. Materials of Cu2ZnSnS4 (CZTS) Prepared by Sol-Gel Method:A Review. Materials Reports, 2017, 31(1): 10-17.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.01.002  或          https://www.mater-rep.com/CN/Y2017/V31/I1/10
1 Katagiri H, Sasaguchi N, Hoshino S, et al. Preparation and evaluation of Cu2ZnSnS4 thin films by sulfurization of E-B evaporated precursors[J]. Solar Energy Mater Solar Cells,1997,49(1-4):407.
2 Guo Q J, Hillhouse H W, Agrawal R. Synthesis of Cu2ZnSnS4 nanocrystal ink and its use for solar cells[J]. J Am Chem Soc,2009,131(33):11672.
3 Wang W, Winkler M T, Gunawan O, et al. Device characteristics of CZTSSe thin-film solar cells with 12.6% efficiency[J]. Adv Energy Mater,2014,4(7):13014651.
4 Fan Yong, Qin Honglei, Mi Baoxiu, et al. Progress in the fabrication of Cu2ZnSnS4 thin film for solar cells[J]. Acta Chim Sinica,2014,72(6):643(in Chinese).
范勇,秦宏磊,密保秀,等.太阳能电池材料-铜锌锡硫化合物薄膜制备及器件应用研究进展[J]. 化学学报,2014,72(6):643.
5 Katagiri H, Jimbo K, Yamada S, et al. Enhanced conversion efficiencies of Cu2ZnSnS4-based thin film solar cells by using preferential etching technique[J]. Appl Phys Exp,2008,1(4):041201.
6 Tanaka K, Oonuki M, Moritake N, et al. Cu2ZnSnS4 thin film solar cells prepared by non-vacuum processing[J]. Solar Energy Mater Solar Cells,2009,93(5):583.
7 Scragg J J, Dale P J, Peter L M. Synthesis and characterization of Cu2ZnSnS4 absorber layers by an electrodeposition-annealing route[J]. Thin Solid Films,2009,517(7):2481.
8 Dai P C, Zhang Y H, Xue Y M, et al. Nanoparticle-based screen printing of copper zinc tin sulfide thin film as photocathode for quantum dot sensitized solar cell[J]. Mater Lett,2015,158(1):198.
9 Gecys P, Markauskas E, Gedvilas M, et al. Ultrashort pulsed laser induced material lift-off processing of CZTSe thin-film solar cells [J]. Solar Energy,2014,102(4):82.
10 Yoo H, Kim J H. Growth of Cu2ZnSnS4 thin films using sulfurization of stacked metallic films[J]. Thin Solid Films,2010,518(22):6567.
11 Washio T, Shinji T, Tajima S, et al. 6% efficiency Cu2ZnSnS4-based thin film solar cells using oxide precursors by open atmosphere type CVD[J]. J Mater Chem,2012,22(9):4021.
12 Tunuguntla V, Chen W C, Shih P H, et al. A nontoxic solvent based sol-gel Cu2ZnSnS4 thin film for high efficiency and scalable low-cost photovoltaic cells[J]. J Mater Chem A,2015,3(29):15324.
13 Ahmed S, Reuter K B, Gunawan O, et al. A high efficiency electrodeposited Cu2ZnSnS4 solar cell[J]. Adv Energy Mater,2012,2(2):253.
14 Zhou Z H, Wang Y Y, Xu D, et al. Fabrication of Cu2ZnSnS4 screen printed layers for solar cells[J]. Solar Energy Mater Solar Cells,2010,94(12):2042.
15 Sun Kaiwen, Su Zhenghua, Han Zili, et al. Fabrication of flexible Cu2ZnSnS4(CZTS) solar cells by sulfurizing precursor films deposited via successive ionic layer absorption and reaction method[J]. Acta Phys Sin,2014,63(1):0188011(in Chinese).
孙凯文,苏正华,韩自力,等.连续离子层吸附反应沉积后硫化法制备柔性铜锌锡硫薄膜太阳电池[J].物理学报,2014,63(1):0188011.
16 Nguyen T H, Septina W, Fujikawa S, et al. Cu2ZnSnS4 thin film solar cells with 5.8% conversion efficiency obtained by a facile spray pyrolysis technique[J]. RSC Adv,2015,5(95):77565.
17 Nandur A, White B. Growth of Cu2ZnSnS4(CZTS) by pulsed laser deposition for thin film photovoltaic absorber material[C]// Phenomenology of Current-induced Spin-orbit Torques: APS March Meeting. Denver, Colorado:Bulletin of the American Physical Socie-ty, 2014: F24.003.
18 Shin B, Gunawan O, Zhu Y, et al. Thin film solar cell with 8.4% power conversion efficiency using an earth-abundant Cu2ZnSnS4 absorber[J]. Prog Photovolt: Res Appl,2013,21(1):72.
19 Leitao J P, Santos N M, Fernandes P A, et al. Study of optical and structural properties of Cu2ZnSnS4 thin films[J]. Thin Solid Films,2011,519(21):7390.
20 Xu Jiaxiong, Yao Ruohe. Investigation of the photovoltaic perfor-mance of n-ZnO∶Al/i-ZnO/n-CdS/p-Cu2ZnSnS4 solar cell[J]. Acta Phys Sin,2012,61(18):1873041(in Chinese).
许佳雄,姚若河.n-ZnO∶Al/i-ZnO/n-CdS/p-Cu2ZnSnS4太阳能电池光伏特性的分析[J].物理学报,2012,61(18):1873041.
21 Ge J, Chu J H, Jiang J C, et al. Characteristics of in-substituted CZTS thin film and bifacial solar cell[J]. ACS Appl Mater Int,2014,6(23):21118.
22 若木守明.光学材料手册[M].北京:化学工业出版社,2010:261.
23 Steinhagen C, Panthani M G, Akhavan V, et al. Synthesis of Cu2ZnSnS4 nanocrystals for use in low-cost photovoltaics[J]. J Am Chem Soc,2009,131(35):12554.
24 Scragg J J. Copper zinc tin sulfide thin films for photovoltaics: Synthesis and characterisation by electrochemical methods[D]. UK: University of Bath; Springer,2011.
25 Salas-Villasenor A L, Mejia I, Sotelo-Lerma M, et al. Performance and stability of solution-based cadmium sulfide thin film transistors: Role of CdS cluster size and film composition[J]. Appl Phys Lett,2012,101(26):2621031.
26 Sahay P P, Nath R K, Tewari S. Optical properties of thermally evaporated CdS thin films[J]. Cryst Res Technol,2007,42(3):275.
27 Cortes A, Gomez H, Marotti R E, et al. Grain size dependence of the bandgap in chemical bath deposited CdS thin films[J]. Solar Energy Mater Solar Cells,2004,82(1-2):21.
28 Shirakata S, Ohkubo K, Ishii Y, et al. Effects of CdS buffer layers on photoluminescence properties of Cu(In,Ga)Se2 solar cells[J]. Solar Energy Mater Solar Cells,2009,93(6-7):988.
29 Ullrich B, Sakai H, Segawa Y. Optoelectronic properties of thin film CdS formed by ultraviolet and infrared pulsed-laser deposition[J]. Thin Solid Films,2001,385(1):220.
30 Sasikala G, Dhanasekaran R, Subramanian C. Electrodeposition and optical characterisation of CdS thin films on ITO-coated glass[J]. Thin Solid Films,1997,302(1-2):71.
31 Detlev R, Stefan G, Salvador B, et al. Ultraviolet optical and microstructural properties of MgF2 and LaF3 coatings deposited by ion-beam sputtering and boat and electron-beam evaporation[J]. Appl Optics,2002,41(16):3196.
32 Tanaka K, Moritake N, Uchiki H. Preparation of Cu2ZnSnS4 thin films by sulfurizing sol-gel deposited precursors[J]. Solar Energy Mater Solar Cells,2007,91(13):1199.
33 黄剑锋.溶胶-凝胶原理与技术[M].北京:化学工业出版社,2005:55.
34 Wang Juan, Li Chen, Xu Bo. Basic principle, advance and current application situation of sol-gel method[J]. Chem Ind Eng,2009,26(3):273(in Chinese).
王焆,李晨,徐博.溶胶-凝胶法的基本原理、发展及应用现状[J].化学工业与工程,2009,26(3):273.
35 Mitzi D B, Todorov T K, Gunawan O, et al. Torwards marketable efficiency solution-processed kesterite and chalcopyrite photovoltaic devices[C]//35th IEEE Photovoltaic Specialists Conference(PVSC). Honolulu, Hawaii, USA: IEEE,2010:000640.
36 Barkhouse D A R, Gunawan O, Gokmen T, et al. Device characte-ristics of a 10.1% hydrazine-processed Cu2ZnSn(Se,S)4 solar cell[J]. Prog Photovolt,2012,20(1):6.
37 Guo Q J, Ford G M, Yang W C, et al. Fabrication of 7.2% efficient CZTSSe solar cells using CZTS nanocrystals[J]. J Am Chem Soc,2010,132(49):17384.
38 Fischereder A, Rath T, Haas W, et al. Investigation of Cu2ZnSnS4 formation from metal salts and thioacetamide[J]. Chem Mater,2010,22(11):3399.
39 Tanaka K, Fukui Y, Moritake N, et al. Chemical composition dependence of morphological and optical properties of Cu2ZnSnS4 thin films deposited by sol-gel sulfurization and Cu2ZnSnS4 thin film solar cell efficiency[J]. Solar Energy Mater Solar Cells,2011,95(3):838.
40 Maeda K, Tanaka K, Fukui Y, et al. Influence of H2S concentration on the properties of Cu2ZnSnS4 thin films and solar cells prepared by sol-gel sulfurization[J]. Solar Energy Mater Solar Cells,2011,95(10):2855.
41 Ki W,Hillhouse H W.Earth-abundant element photovoltaics directly from soluble precursors with high yield using a non-toxic solvent[J]. Adv Energy Mater,2011,1(5):732.
42 Todorov T, Gunawan O, Chey S J, et al. Progress towards marke-table earth-abundant chalcogenide solar cells[J]. Thin Solid Films,2011,519(21):7378.
43 Su Z, Yan C, Tang D, et al. Fabrication of Cu2ZnSnS4 nanowires and nanotubes based on AAO templates[J]. Cryst Eng Comm,2012,14(3):782.
44 Woo K, Kim Y, Moon J. A non-toxic, solution-processed, earth abundant absorbing layer for thin-film solar cells[J]. Energy Environ Sci,2012,5(1):5340.
45 Yang W, Duan H S, Bob B, et al. Novel solution processing of high-efficiency earth-abundant Cu2ZnSn(S,Se)4 solar cells[J]. Adv Mater,2012,24(47):6323.
46 Iiari G M, Fella C M, Ziegler C, et al. Cu2ZnSnSe4 solar cell absorbers spin-coated from amine-containing ether solutions[J]. Solar Energy Mater Solar Cells,2012,104:125.
47 Wada T, Kohara N, Nishiwaki S, et al. Characterization of the Cu(In,Ga)Se2/Mo interface in CIGS solar cells[J]. Thin Solid Films,2001,387(1):118.
48 Cho J W, Ismail A, Park S J, et al. Synthesis of Cu2ZnSnS4 thin films by a precursor solution paste for thin film solar cell application[J]. ACS Appl Mater Interfaces,2013,5(10):4162.
49 Park H, Hwang Y H, Bae B S. Sol-gel processed Cu2ZnSnS4 thin films for a photovoltaic absorber layer without sulfurization[J]. J Sol-Gel Sci Techn,2013,65(1):23.
50 Kahraman S, Cetinkaya S, Podlogar M, et al. Effects of the sulfurization temperature on sol gel-processed Cu2ZnSnS4 thin films[J]. Ceram Int,2013,39(8):9285.
51 Wang G, Zhao W G, Cui Y, et al. Fabrication of a Cu2ZnSn(S,Se)4 photovoltaic device by a low-toxicity ethanol solution process[J]. ACS Appl Mater Interfaces,2013,5(20):10042.
52 Todorov T K, Tang J, Bag S, et al. Beyond 11% efficiency: Cha-racteristics of state-of-the-art Cu2ZnSn(S,Se)4 solar cells[J]. Adv Energy Mater,2013,3(1):34.
53 Zhang K Z, Tao J H, He J, et al. Composition control in Cu2Zn-SnS4 thin films by a sol-gel technique without sulfurization[J]. J Mater Sci:Mater Electron,2014,25(6):2703.
54 Tong Z F, Yan C, Su Z H, et al. Effects of potassium doping on solution processed kesterite Cu2ZnSnS4 thin films solar cells[J]. Appl Phys Lett,2014,105(22):2239031.
55 Katagiri H, Jimbo K, Tahara M, et al. The influence of the composition ratio on CZTS-based thin film solar cells[C] // MRS Procee-dings. San Francisco: Materials Research Society,2009:1165.
56 Su Z H, Sun K W, Han Z L, et al. Fabrication of Cu2ZnSnS4 solar cells with 5.1% efficiency via thermal decomposition and reaction using a non-toxic sol-gel route[J]. J Mater Chem A,2014,2(2):500.
57 Zhang K, Su Z H, Zhao L B, et al. Improving the conversion efficiency of Cu2ZnSnS4 solar cell by low pressure sulfurization[J]. Appl Phys Lett,2014,104(14):1411011.
58 Kahraman S, etinkaya S, etinkara H A, et al. Effects of diethanolamine on sol-gel-processed Cu2ZnSnS4 photovoltaic absorber thin films[J]. Mater Res Bull,2014,50:165.
59 Zhao W, Wang G, Tian Q, et al. Fabrication of Cu2ZnSn(S,Se)4 solar cells via an ethanol-based sol-gel route using SnS2 as Sn source[J]. ACS Appl Mater Interfaces,2014,6(15):12650.
60 Li J V, Kuciauskas D, Yong M R, et al. Effects of sodium incorporation in Co-evaporated Cu2ZnSnSe4 thin-film solar cells[J]. Appl Phys Lett,2013,102(16):1639051.
61 Wang J, Zhang P, Song X F, et al. Sol-gel nanocasting synthesis of kesterite Cu2ZnSnS4 nanorods[J]. RSC Adv,2015,5(2):1220.
62 Su Z H, Tan J M R, Li X L, et al. Cation substitution of solution-processed Cu2ZnSnS4 thin film solar cell with over 9% efficiency[J]. Adv Energy Mater,2015,5(19):15006821.
63 Agawane G, Shin S W, Vanalakar S A, et al. Synthesis of simple, low cost and benign sol-gel Cu2ZnSnS4 thin films: Influence of diffe-rent annealing atmospheres[J]. J Mater Sci-Mater El,2015,26(3):1900.
64 Agawane G L, Kamble A S, Vanalakar S A, et al. Fabrication of 3.01% power conversion efficient high-quality CZTS thin film solar cells by a green and simple sol-gel technique[J]. Mater Lett,2015,158:58.
65 Zhang R H, Szczepaniak S M, Carter N J, et al. A versatile solution route to efficient Cu2ZnSn(S,Se)4 thin-film solar cells[J]. Chem Mater,2015,27(6):2114.
66 Werner M, Sutter-Fella C M, Romanyuk Y E, et al. 8.3% efficient Cu2ZnSn(S,Se)4 solar cells processed from sodium-containing solution precursors in a closed reactor[J]. Thin Solid Films,2015,582:308.
[1] 童汇, 谢建龙, 张志谋, 郭忻, 喻万景, 郭学益, 黄承焕. 富锂锰基正极材料研究进展[J]. 材料导报, 2025, 39(3): 23080074-18.
[2] 周传辉, 王玺朝, 何国杜, 董岚, 吴子华, 谢华清, 王元元. 基于高稳定水基石墨烯/骨胶纳米流体的光热转换性能研究[J]. 材料导报, 2025, 39(3): 23120093-6.
[3] 程东海, 张夫庭, 陶玄宇, 余超, 龚浩, 李海涛, 王德, 熊震宇. 稀土元素对钛合金激光焊接头组织及性能的影响[J]. 材料导报, 2025, 39(3): 23060020-5.
[4] 温强, 李向成, 花银群, 关庆丰, 蔡杰. 强流脉冲电子束表面改性技术及其在热障涂层改性中的研究进展[J]. 材料导报, 2025, 39(3): 23090070-11.
[5] 薛赞, 晋玺, 毛周朱, 兰爱东, 王大雨, 乔珺威. 热机械处理提高Cr47Ni33Co10Fe10多组元共晶合金力学性能[J]. 材料导报, 2025, 39(3): 23120100-6.
[6] 卞宏友, 柳金生, 刘伟军, 张广泰, 姚佳彬, 邢飞. 激光沉积修复GH738/K417G合金时效热处理组织性能分析[J]. 材料导报, 2025, 39(3): 23110265-6.
[7] 刘晓楠, 张春晓, 王世合, 张高展, 毛继泽, 曹少华, 刘国强. 养护制度对添加纳米SiO2超高性能混凝土动静态力学性能的影响[J]. 材料导报, 2025, 39(2): 23070188-7.
[8] 王艳, 李伊岚, 杨子凡, 常天风, 孙琳琳. OPC-SAC复合胶凝体系对超高性能混凝土性能的影响[J]. 材料导报, 2025, 39(2): 23120218-7.
[9] 杨淑雁, 徐宁阳. 多因素复合环境下钢筋与混凝土黏结性能研究进展[J]. 材料导报, 2025, 39(2): 23100224-10.
[10] 景宏君, 张超伟, 高萌, 丁仁红, 李毅民, 康明珂, 周子涵, 朱韶峰. 骨架密实型水泥稳定煤矸石级配设计与性能研究[J]. 材料导报, 2025, 39(2): 22040252-7.
[11] 周祎伟, 段海涛, 李健, 马利欣, 李文轩, 尤锦鸿, 贾丹. 外加磁场对摩擦副材料摩擦磨损及抗腐蚀性能影响的研究进展[J]. 材料导报, 2025, 39(2): 23110090-19.
[12] 曹雷刚, 侯鹏宇, 杨越, 蒙毅, 刘园, 崔岩. AlCoCrFeNix高熵合金高温热处理微观组织演变及力学性能[J]. 材料导报, 2025, 39(2): 23120247-7.
[13] 李朋娟, 邹振羽, 黄鹏飞, 金鑫, 吴晓雨, 李晓丽. N/O/P共掺杂三聚氰胺基多孔碳材料的制备及储锌性能研究[J]. 材料导报, 2025, 39(2): 23100113-7.
[14] 裴海华, 赵建伟, 郑家桢, 张贵才, 张菅, 蒋平. 改性纳米锂皂石强化高温泡沫调驱性能研究[J]. 材料导报, 2025, 39(2): 22110070-5.
[15] 赵佳薇, 陈浩霖, 罗倪, 刘振国. 卷对卷技术制备钙钛矿太阳能电池的研究进展[J]. 材料导报, 2025, 39(1): 24030057-17.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed