Please wait a minute...
材料导报  2026, Vol. 40 Issue (1): 24100199-6    https://doi.org/10.11896/cldb.24100199
  高分子与聚合物基复合材料 |
高分子纤维布对无机防水堵漏材料性能的影响
安雪晖1, 朱玲2,*, 韦妮金2, 姚国友2, 石小成2
1 清华大学土木水利学院,北京 100084
2 佳固士新材料有限公司,江苏 苏州 215100
Effect of Polymer Fiber Fabric on Performance of Inorganic Waterproof and Leakage-preventing Materials
AN Xuehui1, ZHU Ling2,*, WEI Nijin2, YAO Guoyou2, SHI Xiaocheng2
1 School of Civil Engineering and Hydraulic Engineering, Tsinghua University, Beijing 100084, China
2 JiaGushi New Materials Co., Ltd., Suzhou 215100, Jiangsu, China
下载:  全 文 ( PDF ) ( 20797KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为解决现有背水面无机防水堵漏材料由于刚性太强,在外力作用下易随地基开裂而开裂失去原有防水效果的问题,在现有背水面无机防水堵漏材料的基础上,引入涤纶T、丙纶PP和高分子抗碱纤维布GT三大类共七种具有较好抗拉伸和抗撕裂性能的高分子纤维布,形成了一种新型刚柔结合的背水面渗漏修复材料。研究了复合材料的拉伸性能、撕裂性能、粘结性能、剥离性能以及在背水面的防水抗渗性能,同时,通过渗透高度、高分子纤维布厚度、复合材料的微观结构等探究内在作用机制。研究结果表明:高分子纤维布可以提升无机防水堵漏材料的抗变形能力,且两者有很好的粘结性能,复合材料在防水抗渗方面也具有优异性能。复合材料的性能不仅与无机防水堵漏材料的水化产物和高分子纤维布之间的结合程度有关,而且与高分子纤维布的纤维厚度、防水膜层厚度以及纤维与防水膜层间的作用有关,尤其是高分子抗碱纤维布GT,特别适合应用于背水面渗漏修复材料。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
安雪晖
朱玲
韦妮金
姚国友
石小成
关键词:  防水堵漏修复  背水面  无机防水堵漏材料  高分子纤维布  刚柔结合材料    
Abstract: To address the problem that existing negative-side inorganic waterproofing & leakage-preventing materials tend to crack under external forces due to excessive rigidity, consequently losing their waterproofing effectiveness, this study developed a novel rigid-flexible composite material by incorporating three types of high-performance polymer fiber fabrics (7 variants in total), i.e., polyester T, polypropylene PP, and alkali-resis-tant polymer fiber fabric GT, into conventional inorganic waterproofing materials. The tensile properties, tear resistance, bonding performance, peel resistance, and waterproofing/impermeability characteristics of composite materials at negative-side surfaces were systematically investigated. The internal mechanisms were elucidated through analyses of penetration height, fiber thickness, and microstructure observations. Results demonstrated that polymer fiber fabrics effectively enhanced the deformation resistance of inorganic waterproofing materials while maintaining excellent interfacial bonding. The composite materials also showed outstanding performance in waterproofing and leak preventing applications. The composite exhibited superior performance, which correlates with: ⅰ) interfacial bonding between hydration products and polymer fibers; ⅱ) sy-nergistic effects between fiber thickness and waterproof coating thickness; and ⅲ) interfacial interactions between fibers and coatings. In particular, the alkali-resistant polymer fiber GT showed exceptional suitability for negative-side leakage repair applications due to its optimized compatibility and performance characteristics.
Key words:  waterproofing and leak preventing repair    negative side    inorganic waterproofing & leakage-preventing material    polymer fiber fabric    combination of rigid and flexible materials
出版日期:  2026-01-10      发布日期:  2026-01-09
ZTFLH:  TU575  
基金资助: “十四五”国家重点研发计划(2022YFC3801605)
通讯作者:  * 朱玲,硕士,佳固士新材料有限公司工程师,从事有机-无机防水堵漏材料的研发工作。1962522930@qq.com   
作者简介:  安雪晖,博士,清华大学水利水电工程系教授、博士研究生导师。主要研究方向为自密实混凝土与堆石混凝土、混凝土智能制造及检测技术、混凝土结构生命周期性能模拟等。
引用本文:    
安雪晖, 朱玲, 韦妮金, 姚国友, 石小成. 高分子纤维布对无机防水堵漏材料性能的影响[J]. 材料导报, 2026, 40(1): 24100199-6.
AN Xuehui. Effect of Polymer Fiber Fabric on Performance of Inorganic Waterproof and Leakage-preventing Materials. Materials Reports, 2026, 40(1): 24100199-6.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24100199  或          https://www.mater-rep.com/CN/Y2026/V40/I1/24100199
1 Liu X,Xiao X Z,Xu H T,et al. Construction Technology, 2021, 50(3), 5 (in Chinese).
刘星, 肖绪文, 徐洪涛, 等. 施工技术, 2021, 50(3), 5.
2 Zhao F. Engineering and Construction, 2022, 36(4), 1086 (in Chinese).
赵峰. 工程与建设, 2022, 36(4), 1086.
3 Wang D Y, Xiao X W, Xiao J Z, et al. Industrial Architecture, 2022, 52(4), 186 (in Chinese).
王冬雁, 肖绪文, 肖建庄, 等. 工业建筑, 2022, 52(4), 186.
4 Bhagyashree K, Shariq S, Manisha S, et al. E3S Web of Conferences, 2024, 559, 4016.
5 You L X. Jiangxi Building Materials, 2017(15), 80 (in Chinese).
游良兴. 江西建材, 2017(15), 80.
6 Liu Y. Common problems and prevention of leakage quality in building waterproofing engineering. Master's Thesis, Hubei University of Technology, China, 2015 (in Chinese).
柳颖. 建筑防水工程渗漏质量通病与防治. 硕士学位论文, 湖北工业大学, 2017.
7 Xiong Jue. Experimental study on anti-permeability influence of composite cement mortar to the dorsal surface of concrete. Master's Thesis, Hunan University, China, 2015 (in Chinese).
熊崛. 水泥复合砂浆对混凝土背水面抗渗的试验研究, 硕士学位论文, 湖南大学, 2015.
8 Chu J J, Meng Y N, Yu S X, et al. Engineering Quality, 2022, 40(6), 90 (in Chinese).
褚建军, 孟亚楠, 于世兴, 等. 工程质量, 2022, 40(6), 90.
9 Wang Y F, Huang T, Gu X L, et al. New Building Materials, 2021(7), 124 (in Chinese).
王玉峰, 黄韬, 顾锡丽, 等. 新型建筑材料, 2021(7), 124.
10 Li G Y, Huang X F, Lin J S, et al. Construction and Building Materials, 2019, 200, 36.
11 Wei H, Ping W, Wan YY, et al. Advanced Materials Research, 2010, 168, 1381.
12 Liu S J, Hu Q Q, Zhao F Q, et al. Construction and Building Materials, 2017, 72, 15.
13 He J, Huang B Y, Wang L. Polymers, 2023, 15(7), 1768.
14 Pan Z R, Tuladhar R, Yin S. Buildings, 2024, 14(6), 1631.
15 Zhou Z C, Zhao B, Lone U M. Journal of Cleaner Production, 2024, 436, 140456.
No related articles found!
[1] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[2] TAO Jun, WANG Xiaofeng, HAN Zhongxi, FENG Bo, NAN Hai, XIE Zhongyuan, HUANG Yafeng. Preparation and Microstructure of Aluminum Powder/Polytetrafluoroethylene Mechanical Activated Energetic Composites[J]. Materials Reports, 2018, 32(6): 894 -898 .
[3] LI Hongfeng, QU Chunyan, WANG Dezhi, LIU Zhongliang, GU Jiyou, ZHANG Yang. Curing Kinetics and Fracture Toughness of BDM/DABPA System Modified by Short Glass Fiber Reinforced Polyether Ketone Ketones (PEKK-GF)[J]. Materials Reports, 2018, 32(6): 971 -976 .
[4] WANG Shengmin, ZHAO Xiaojun, HE Mingyi. Research Status and Development of Mechanical Plating[J]. Materials Reports, 2017, 31(5): 117 -122 .
[5] WANG Keqiang, YE Shenjie, WANG Wenjin, FU Jia, CHEN Zhongren. Effect of Asymmetric Block Copolymer PS-b-PMMA on the Compatibility of PCHMA/PMMA Blends by Different Blending Methods: Interface vs Micelles[J]. Materials Reports, 2017, 31(8): 98 -103 .
[6] ZHOU Shuangshuang, LIU Xiqin, LIU Zili, HOU Zhiguo, TIAN Qingchao. Effect of Normalizing Process on Microstructure Evolution and Tensile
Properties of Cold-rolled Low-alloy Cryogenic Steel
[J]. Materials Reports, 2017, 31(6): 98 -104 .
[7] ZHANG Haidong,WEI Jiangxiong, ZHAO Zhiguang, YU Qijun, LI Fangxian. Influence of Calcium Silicate Hydrate Seed on Compressive Strength of CaO-SiO2-H2O Autoclaved System and Its Mechanism Analysis[J]. Materials Reports, 2017, 31(14): 122 -126 .
[8] BAI Pengfei, MIN Xiaohua, TAO Xiaojie, ZHONG Gongcheng, BAI Shuyu, CHENG Congqian, ZHAO Jie. Effect of Microstructure on Necking of Medical U-shaped Nail of TC4 Titanium Alloy[J]. Materials Reports, 2017, 31(13): 146 -150 .
[9] HE Yuandong, SUN Changzhen, MAO Weiguo, MAO Yiqi, ZHANG Honglong, CHEN Yanfei, PEI Yongmao, FANG Daining. Measurement of Transverse Piezoelectric Coefficients of Pb(Zr0.52Ti0.48)O3 Thin Films by a Mechano-electrical Multiphysics Coupling, Bulge Test Method[J]. Materials Reports, 2017, 31(15): 139 -144 .
[10] SONG Xiaolan, LIU Hanjun, WANG Haibo, DUAN Hailong, ZHANG Ying, LIU Shichao, ZHOU Yongxin, ZHOU Zhihai. Effect of Pre-activation Time on Structure and Electrochemical Performance for Rice Husk-based Activated Carbon[J]. Materials Reports, 2017, 31(20): 25 -29 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed