Please wait a minute...
材料导报  2025, Vol. 39 Issue (9): 24010163-7    https://doi.org/10.11896/cldb.24010163
  金属与金属基复合材料 |
基于NSGA-Ⅱ算法的直流传导电磁泵多目标优化
陈观慈, 杨进, 张文斌*, 杨照林, 陈永华
昆明理工大学机电工程学院,昆明 650500
Multi-objective Optimization of DC Conduction Electromagnetic Pump Based on NSGA-Ⅱ Algorithm
CHEN Guanci, YANG Jin, ZHANG Wenbin*, YANG Zhaolin, CHEN Yonghua
Faculty of Mechanical and Electrical Engineering, Kunming University of Science and Technology, Kunming 650500, China
下载:  全 文 ( PDF ) ( 13305KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 高集成度芯片和电子设备的热障问题已成为制约其集约化发展的瓶颈之一,利用直流传导电磁泵(DC-EMP)驱动液态金属进行传热与散热可以有效解决水冷系统沸点低、热导率低且易发生沸腾相变的问题。为提高DC-EMP的驱动效率,本工作建立了Kriging代理模型,以作用区长度L、流道宽度W、流道高度H和输入电流I作为设计变量,压力P和驱动效率η为目标函数,采用NSGA-Ⅱ算法和TOPSIS决策法进行多目标优化,并对初始方案和优化结果进行外特性试验。结果表明,数值模拟与试验结果基本吻合;优化后,DC-EMP在设计工况下的压力和效率均有所提高,相较于初始方案分别提升了32.72%和8.85%;优化后泵内平均磁感应强度增大了约36.58%,分布不均匀性降低了19.36%,流道内流体相对速度分布更均匀,削弱了磁流体动力学(Magnetohydrodynamic,MHD)效应对液态金属流动的影响;基于优化结果,在流道内安装与流速方向平行的绝缘板可以有效减小电流在作用区端部的扩散效应,提高作用区内的有效电流。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈观慈
杨进
张文斌
杨照林
陈永华
关键词:  液态金属  直流传导电磁泵  Kriging模型  遗传算法    
Abstract: The thermal barrier problem of highly integrated chips and electronic devices has become a bottleneck restricting their intensive development, the problem of low boiling point, low thermal conductivity and susceptibility to boiling phase change of traditional water-cooling system can be effectively solved by utilizing DC conduction electromagnetic pump (DC-EMP) to drive the liquid metal for heat transfer and heat dissipation. In order to improve the efficiency of the DC-EMP, a Kriging model was developed. The length of the working area, channel width, channel height and input current were taken as the design variables, and pressure and efficiency were taken as the objective functions, the NSGA-Ⅱand TOPSIS method were used for the multi-objective optimization, and the initial scheme and optimization results were tested for external characteristics. The results show that the numerical simulation is in general agreement with the experimental results. The optimized DC-EMP has improved pressure and efficiency at design conditions by 32.72% and 8.85%, respectively, compared to the initial solution. The optimized average magnetic field density in the pump increased by about 36.58% and the distribution inhomogeneity decreased by about 19.36%. The relative velocity distribution of the fluid in the flow channel is more uniform, and the magnetohydrodynamic effect on the liquid metal flow is weakened. Based on the results of optimization, the installation of insulating plates in the flow channel parallel to the direction of flow can effectively reduce the spreading effect of the current and increase the effective current.
Key words:  liquid metal    DC conduction electromagnetic pump    Kriging model    genetic algorithm
出版日期:  2025-05-10      发布日期:  2025-04-28
ZTFLH:  TH35  
基金资助: 云南省科技厅揭榜制科技项目(202104BN050011)
通讯作者:  *张文斌,博士,昆明理工大学机电工程学院教授、博士研究生导师,全国仪器仪表协会传感器分会高级会员。主要从事电磁测量及电磁场传感器、智能传感及嵌入式系统研究。zwbscg@126.com   
作者简介:  陈观慈,博士,昆明理工大学机电工程学院教授、博士研究生导师。长期从事液态金属电磁驱动及其传热、参数优化设计等基础理论及应用研究。
引用本文:    
陈观慈, 杨进, 张文斌, 杨照林, 陈永华. 基于NSGA-Ⅱ算法的直流传导电磁泵多目标优化[J]. 材料导报, 2025, 39(9): 24010163-7.
CHEN Guanci, YANG Jin, ZHANG Wenbin, YANG Zhaolin, CHEN Yonghua. Multi-objective Optimization of DC Conduction Electromagnetic Pump Based on NSGA-Ⅱ Algorithm. Materials Reports, 2025, 39(9): 24010163-7.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24010163  或          https://www.mater-rep.com/CN/Y2025/V39/I9/24010163
1 Lu B, Li A M, Yang S J, et al. Materials Reports, 2024, 38(8), 170 (in Chinese).
陆奔, 李安敏, 杨树靖, 等. 材料导报, 2024, 38(8), 170.
2 Heinzel A, Hering W, Konys J, et al. Energy Technology, 2017, 5(7), 1026.
3 Al-Habahbeh O M, Al-Saqqa M, Safi M, et al. Alexandria Engineering Journal, 2016, 55(2), 1347.
4 Kim H R. Annals of Nuclear Energy, 2014, 73, 162.
5 Muhammad A, Selvakumar D. International Journal of Heat and Mass Transfer, 2020, 150, 119265.
6 Xu S, Wang C, Chen S M, et al. Nuclear Power Engineering, 2022, 43(S2), 40 (in Chinese).
徐帅, 王冲, 陈树明, 等. 核动力工程, 2022, 43(S2), 40.
7 Lee G H, Kim H R. Annals of Nuclear Energy, 2017, 109, 490.
8 Yao L, Li X B, Zhang H N, et al. Annals of Nuclear Energy, 2023, 183, 109641.
9 Lee G H, Kim H R. Nuclear Engineering and Technology, 2019, 51(3), 654.
10 Zhang X D, Zhou Y X, Liu J. Applied Thermal Engineering, 2020, 179, 115610.
11 Xie K W, Liu M, Liu J, et al. Electro-Mechanical Engineering, 2009, 25(3), 1 (in Chinese).
谢开旺, 刘明, 刘静, 等. 电子机械工程, 2009, 25(3), 1.
12 Sun P, Liu C K, He Z Z. Annals of Nuclear Energy, 2023, 180, 109486.
13 Kwak J, Kim H R. Journal of Nuclear Science and Technology, 2017, 54(12), 1292.
14 Haaland S E. Journal of Fluids Engineering, 1983, 105(1), 89.
15 Lee G H, Kim H R. Annals of Nuclear Energy, 2018, 115, 343.
16 Lee G H, Kim H R. Nuclear Engineering and Technology, 2018, 50(6), 869.
17 Takorabet N. IEEE Transactions on Magnetics, 2006, 42(3), 430.
18 Xiong Y F, Li H S, Gong Y L. Chemical Industry and Engineering Progress, DOI:10. 16085/j. issn. 1000-6613. 2023-0771 (in Chinese).
熊远帆, 李华山, 龚宇烈. 化工进展, DOI:10. 16085/j. issn. 1000-6613. 2023-0771.
19 Wu X G, Wang L, Chen H Y, et al. Materials Reports, 2022, 36(17), 115 (in Chinese).
吴贤国, 王雷, 陈虹宇, 等. 材料导报, 2022, 36(17), 115.
20 Qu J L, Shi W K, Xuan S Y, et al. Journal of Jilin University(Engineering and Technology Edition), DOI: 10. 13229/j. cnki. jdxbgxb. 20230347 (in Chinese).
曲俊龙, 史文库, 玄圣夷, 等. 吉林大学学报(工学版), DOI: 10. 13229/j. cnki. jdxbgxb. 20230347.
21 Kandev N, Kagan V, Daoud A. FDMP: Fluid Dynamics & Materials Processing, 2010, 6(3), 291.
22 Li M J, Chen L, Zhang Z Y, et al. Scientia Sinica (Technologica), 2019, 49(10), 1186 (in Chinese).
李明健, 陈龙, 张哲妍, 等. 中国科学:技术科学, 2019, 49(10), 1186.
[1] 井文昌, 张志鸿, 刘香琛, 吴云翼, 李宝让. 新型液态金属电池材料体系及其相关技术的研究与进展[J]. 材料导报, 2025, 39(1): 23090098-17.
[2] 陆奔, 李安敏, 杨树靖, 袁子豪, 惠佳琪. 磁性镓基液态金属复合材料的研究进展[J]. 材料导报, 2024, 38(8): 22090217-15.
[3] 秦怡歆, 曾凯, 邢保英, 张洪申, 何晓聪. 颗粒增强粘接层结构参数对连接强度的影响及工艺优化[J]. 材料导报, 2024, 38(6): 22060206-5.
[4] 张学鹏, 张戎令, 杨斌, 肖鹏震, 王小平, 龙朝飞. 冻融-硫酸盐腐蚀耦合作用下早龄期混凝土强度演变及预测模型研究[J]. 材料导报, 2024, 38(5): 22080059-9.
[5] 李安敏, 杨树靖, 惠佳琪, 袁子豪, 常大鹏, 黄卓昉, 吴宇. 液态金属的多功能化[J]. 材料导报, 2023, 37(1): 21030212-12.
[6] 温泽明, 陈剑英, 王越平, 肖红. 镓基液态金属在可穿戴器件与智能服装上的应用研究进展[J]. 材料导报, 2022, 36(9): 20080043-5.
[7] 李鹏, 杜艺博, 黄培炜, 丁瀛, 刘根柱. 基于无壁型微脉管的光能损伤自修复复合材料[J]. 材料导报, 2022, 36(2): 20090371-5.
[8] 刘通, 诸葛祥群, 蓝嘉昕, 耿继业, 罗志虹, 李义兵, 罗鲲. 聚氨酯基压敏材料3D打印结合GaInSn液态金属导线制作柔性压力传感器的研究[J]. 材料导报, 2022, 36(15): 21030297-5.
[9] 逯海卿, 吴兴丽, 张鹏, 叶超超, 魏文庆. 基于液晶弹性体和液态金属的人造肌肉纤维的制备及分析[J]. 材料导报, 2022, 36(14): 21050105-4.
[10] 王心桥, 张健, 苏彤, 赵兴, 郭永权. 先进液态金属电池熔盐电解质的设计[J]. 材料导报, 2022, 36(1): 20090223-7.
[11] 耿继业, 蓝嘉昕, 刘通, 诸葛祥群, 罗志虹, 李义兵, 罗鲲. 3D打印聚氨酯微流道封装镓基液态金属柔性导线及其性能[J]. 材料导报, 2021, 35(20): 20040-20044.
[12] 杨帆, 丁建伟, 刘豪, 邱长军, 李胜. 液态GaIn合金对铜的腐蚀机理与防腐蚀技术研究[J]. 材料导报, 2021, 35(20): 20076-20080.
[13] 黄炜, 周烺, 葛培, 杨涛. 基于PSO-BP和GA-BP神经网络再生砖骨料混凝土强度模型的对比研究[J]. 材料导报, 2021, 35(15): 15026-15030.
[1] LI Jiawei, LI Dayu, GU Yixin, XIAO Jinkun, ZHANG Chao, ZHANG Yanjun. Research Progress of Regulating Anatase Phase of TiO2 Coatings Deposited by Thermal Spray[J]. Materials Reports, 2017, 31(3): 26 -31 .
[2] . Adhesion in SBS Modified Asphalt Containing Warm Mix Additive and
Aggregate System Based on Surface Free Theory
[J]. Materials Reports, 2017, 31(4): 115 -120 .
[3] JIA Zhihong, WENG Yaoyao, DING Lipeng, CHENG Tao, LIU Yingying, LIU Qing. Sn Microalloying for Aluminum Alloys: Strengthening Effects and Mechanisms[J]. Materials Reports, 2017, 31(9): 123 -127 .
[4] WANG Ru, ZHANG Shaokang, WANG Gaoyong. Influence and Mechanism of Mineral Admixtures on Setting and Hardening of Styrene-Butadiene Copolymer/Cement Composite Cementitious Material[J]. Materials Reports, 2017, 31(24): 69 -73 .
[5] DING Yutian, DOU Zhengyi, GAO Yubi, GAO Xin, LI Haifeng, LIU Dexue. In-situ Observation of Solidification Process of GH3625 Superalloy at Different Cooling Rates[J]. Materials Reports, 2017, 31(24): 150 -155 .
[6] JIN Chenxin, XU Guojun, LIU Liekai, YUE Zhihao, LI Xiaomin,TANG Hao, ZHOU Lang. Effects of Bulk Electrical Resistivity and Doping Type of Silicon on the Electrochemical Performance of Lithium-ion Batteries with Silicon/Graphite Anodes[J]. Materials Reports, 2017, 31(22): 10 -14 .
[7] LIU Guoyi, LIU Yuanjun, ZHAO Xiaoming. A Study on Protecting Efficiency to the Radiative Heat of the Outer Fabric for the Fire Proximity Suits[J]. Materials Reports, 2017, 31(22): 116 -120 .
[8] ZHANG Wangxi, WANG Yanzhi, LIANG Baoyan, LI Qiquan, LUO Wei, SUN Changhong, CHENG Xiaozhe, SUN Yuzhou. Review on the Development of Nanodiamonds Used as Functional Materials[J]. Materials Reports, 2018, 32(13): 2183 -2188 .
[9] YANG Fang, ZHANG Long, YU Kun, QI Tianjiao, GUAN Debin. Recent Advances in Humidity Sensitivity of Graphene[J]. Materials Reports, 2018, 32(17): 2940 -2948 .
[10] TIAN Yaqiang, LI Wang, ZHENG Xiaoping, WEI Yingli, SONG Jinying, CHEN Liansheng. Application of Alloy Elements in Quenching and Partitioning Steel:an Overview[J]. Materials Reports, 2019, 33(7): 1109 -1118 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed