Please wait a minute...
材料导报  2025, Vol. 39 Issue (24): 24110007-10    https://doi.org/10.11896/cldb.24110007
  高分子与聚合物基复合材料 |
环境材料去除水中硝酸盐的研究进展
王丽娜1, 王珍1,*, 张峰举1, 陈利荣1, 张承焱2
1 宁夏大学生态环境学院,银川 750021
2 宁夏大学化学化工学院,银川 750021
Research Progress on the Removal of Nitrate from Water by Environmental Materials
WANG Lina1, WANG Zhen1,*, ZHANG Fengju1, CHEN Lirong1, ZHANG Chengyan2
1 College of Ecology and Environmental Sciences, Ningxia University, Yinchuan 750021, China
2 College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China
下载:  全 文 ( PDF ) ( 18845KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 水体中的硝酸盐污染问题威胁着人类健康和生态系统安全,一直备受全球关注。离子交换法、膜技术、电化学还原、金属还原、生物反硝化等方法已经广泛用于解决水体中的硝酸盐污染问题。在各项技术应用过程中,环境材料扮演着重要角色,本文综述了反渗透膜、离子交换膜、吸附材料、离子交换树脂、电极、金属纳米材料、催化剂以及电子供体材料等环境材料。首先概括介绍各类方法去除硝酸盐的作用机理以及影响因素,通过归纳总结各类方法中代表性环境材料的应用,进而探讨了提高硝酸盐脱除效率的材料改进方法,重点阐述了各改性材料在去除硝酸盐中展示出的优异性能、增效机理以及提高硝酸盐脱除效率的关键因素。最后,对四大类方法中的功能材料进行总结对比分析,并针对环境材料解决硝酸盐污染存在的问题(如吸附选择性低、难以控制产物选择性、二次污染、催化剂易失活等)以及未来的研究方向进行了思考和展望,旨在为水体中硝酸盐污染修复提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王丽娜
王珍
张峰举
陈利荣
张承焱
关键词:  环境材料  硝酸盐  水污染  水处理技术    
Abstract: Nitrate pollution in water bodies has been a global concern, threatening human health and ecosystem security. Ion exchange, membrane technology, electrochemical reduction, metal reduction, biological denitrification, and other methods have been widely used to address nitrate pollution in water bodies. In the application of each technology, environmental materials play a crucial role. The materials reviewed in this summary included reverse osmosis membranes, ion exchange membranes, adsorbent materials, ion exchange resins, electrodes, metal nanomaterials, catalysts, and electron donor materials, among others. Firstly, the mechanisms and influencing factors of nitrate removal in various methods were introduced. The application of representative environmental materials in these methods was summarized, with an emphasis on the role of each modified material in nitrate removal and how material improvements enhance efficiency. The excellent performance of each modified material in nitrate removal was described, along with the mechanisms of efficiency enhancement and the key factors for improving nitrate removal efficiency. Finally, the functional materials used in the four categories of methods were summarized, compared, and analyzed. The challenges associated with environmental materials for nitrate pollution remediation, such as low adsorption selectivity, difficulty in controlling product selecti-vity, secondary pollution, and catalyst deactivation were also discussed. Future research directions were proposed to provide references for the remediation of nitrate pollution in water bodies.
Key words:  environmental material    nitrate    water pollution    water treatment technology
出版日期:  2025-12-25      发布日期:  2025-12-17
ZTFLH:  X523  
基金资助: 国家自然科学基金(52360029);宁夏自然科学基金(2023AAC03111)
通讯作者:  *王珍,博士,宁夏大学生态环境学院副教授、硕士研究生导师。目前主要从事环境污染修复方面的研究。wz305nd@nxu.edu.cn   
作者简介:  王丽娜,宁夏大学生态环境学院硕士研究生,在王珍副教授的指导下进行研究。目前主要从事生物炭负载纳米零价铁对盐碱地下水中硝酸盐的去除研究。
引用本文:    
王丽娜, 王珍, 张峰举, 陈利荣, 张承焱. 环境材料去除水中硝酸盐的研究进展[J]. 材料导报, 2025, 39(24): 24110007-10.
WANG Lina, WANG Zhen, ZHANG Fengju, CHEN Lirong, ZHANG Chengyan. Research Progress on the Removal of Nitrate from Water by Environmental Materials. Materials Reports, 2025, 39(24): 24110007-10.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24110007  或          https://www.mater-rep.com/CN/Y2025/V39/I24/24110007
1 Zhang X, Zhang Y, Bi Z L, et al. Environmental Science, 2020, 41(4), 1594(in Chinese).
张鑫, 张妍, 毕直磊, 等. 环境科学, 2020, 41(4), 1594.
2 Fewtrell L. Environmental Health Perspectives, 2004, 112(14), 1371.
3 Liu C, Wang W, Yang B, et al. Water Research, 2021, 195, 116976.
4 Labarca F, Bórquez R. Science of the Total Environment, 2020, 723, 137809.
5 Liu Y, Zhang X, Wang J. Chemosphere, 2022, 291, 132728.
6 Zhang X, Wang Y, Liu C, et al. Chemical Engineering Journal, 2021, 403, 126269.
7 Boasiako C A, Zhou Z, Huo X, et al. Journal of Hazardous Materials, 2023, 446, 130661.
8 Pang Y, Wang J. Science of the Total Environment, 2021, 794, 148699.
9 Mahmoud M E, Kamel N K, Amira M F, et al. Separation and Purification Technology, 2024, 344, 127067.
10 Long L, Guo H, Zhang L, et al. Environmental Science & Technology, 2024, 58(14), 6435.
11 Wang Z, Akram M A, Zhang S, et al. Desalination, 2024, 574, 117233.
12 Liu Y, Yang F, Ren L, et al. Chemical Engineering Journal, 2024, 496, 153999.
13 Chong J Y, Zhao Y, Wang R. Chemical Engineering Journal, 2024, 495, 153277.
14 Mubita T, Porada S, Aerts P, et al. Journal of Membrane Science, 2020, 607, 118000.
15 Chinello D, Post J, de Smet L C P M. Separation and Purification Technology, 2025, 355, 129440.
16 Shi Y, Wan H, Wang J, et al. Chemical Engineering Journal, 2024, 483, 152776.
17 Zhou H, Tan Y, Gao W, et al. Scientific Reports, 2020, 10(1), 16126.
18 Lu S, Zhu Q, Li R. Journal of Colloid and Interface Science, 2023, 652, 1481.
19 Shin J, Kwak J, Kim S, et al. Environmental Research, 2023, 231, 116266.
20 Le M T, Nguyen X H, Nguyen T P, et al. Journal of Environmental Chemical Engineering, 2023, 11(5), 110991.
21 Eltaweil A S, Omer A M, El-Aqapa H G, et al. Carbohydrate Polymers, 2021, 274, 118671.
22 Zhang L, Feng M, Zhao D, et al. Separation and Purification Technology, 2023, 304, 122248.
23 Zhang L, Fu W, Qiu S, et al. Journal of Environmental Chemical Engineering, 2023, 11(6), 111459.
24 Tian J W, He S S, Zhang T, et al. Industrial Water Treatment, 2024, 44(1), 138(in Chinese).
田佳旺, 何珊珊, 张涛, 等. 工业水处理, 2024, 44(1), 138.
25 Zeng B, Tao B, Pan Z, et al. Journal of Environmental Management, 2023, 347, 119142.
26 Cyganowski P, Gruss Ł, Skorulski W, et al. Journal of Water Process Engineering, 2024, 59, 104959.
27 Gu Y, Sun Y. Chemical Engineering Journal, 2024, 485, 149650.
28 Huo X, Vanneste J, Cath T Y, et al. Water Research, 2020, 175, 115688.
29 Yin S, Guan Z, Zhu Y, et al. ACS Nano, 18(41), 27833.
30 Gao X, Tse E C M. Small, 2024, 20(11), 2306311.
31 Cui Y, Sun C, Ding G, et al. Science China Materials, 2023, 66(11), 4387.
32 Zhou S, Dai Y, Song Q, et al. ACS Applied Materials & Interfaces, 2024, 16(16), 20551.
33 Zhang L, Wu Y, Zhu Z, et al. Biochar, 2024, 6(1), 8.
34 Zhou Y, Zhang L, Zhu Z, et al. Angewandte Chemie, 2024, 136(18), e202319029.
35 Liu S, Miao W, Ma K, et al. Applied Catalysis B, Environment and Energy, 2024, 350, 123919.
36 Wang Z, Xia S, Deng X, et al. Journal of Colloid and Interface Science, 2024, 664, 84.
37 Hua Y, Song N, Wu Z, et al. Advanced Functional Materials, 2024, 34, 2314461.
38 Sheng Y, Yang R, Shi K, et al. Chemical Engineering Journal, 2024, 485, 149769.
39 Jang W, Oh D, Lee J, et al. Journal of the American Chemical Society, 2024, 146(40), 27417.
40 Sun S, Dai C, Zhao P, et al. Nature Communications, 2024, 15(1), 260.
41 Liu Y, Zhong X, Liu M, et al. Applied Catalysis B, Environment and Energy, 2024, 355, 124205.
42 Geng J, Ji S. Nano Research, 2024, 17(6), 4898.
43 Huang S Y, Liu L F, Gu Y J, et al. Materials Reports, 2024, 38(10), 67(in Chinese).
黄顺元, 刘律飞, 顾韵洁, 等. 材料导报, 2024, 38(10), 67.
44 Tan X, Wang X, Zhou T, et al. Chemosphere, 2022, 295, 133929.
45 Gou Q, Mao Y, Lv S, et al. Applied Catalysis B, Environment and Energy, 2024, 348, 123810.
46 Liu F, Li J, An N, et al. Journal of Hazardous Materials, 2024, 465, 133484.
47 Xu Y, Cheng C, Zhu J, et al. Angewandte Chemie International Edition, 2024, 63(16), e202400289.
48 Li H, Wang Y, Chen S, et al. Small, 2024, 20, 2308182.
49 Zhou N, Wang J, Zhang N, et al. Chinese Journal of Catalysis, 2023, 50, 324.
50 Gemeda T N, Kuo D H, Ha Q N, et al. Journal of Materials Chemistry A, 2024, 12(47), 33023.
51 Zhong X, Wu X, Liu Y, et al. Journal of Environmental Chemical Engineering, 2024, 12(1), 111871.
52 Zhang S, Kong Z, Wang H, et al. Chemical Engineering Journal, 2022, 433, 133535.
53 Wang Y, Wang S, Fu Y, et al. Chinese Journal of Catalysis, 2024, 56, 104.
54 Lyu X S, Wang X L, Jiang G M, et al. Materials Reports, 2023, 37(4), 62(in Chinese).
吕晓书, 王霞玲, 蒋光明, 等. 材料导报, 2023, 37(4), 62.
55 Gibert O, Abenza M, Reig M, et al. Science of the Total Environment, 2022, 810, 152300.
56 Ding D, Zhao Y, Chen Y, et al. Journal of Environmental Management, 2024, 353, 120187.
57 Zhang X, Niu M, Zheng K, et al. Chemical Engineering Journal, 2024, 499, 156543.
58 Pei Y, Cheng W, Liu R, et al. Journal of Hazardous Materials, 2024, 464, 133023.
59 Fang S, Zhang J, Niu Y, et al. Chemical Engineering Journal, 2023, 461, 141990.
60 Wei A L, Ma J, Chen J, et al. Chemical Engineering Journal, 2018, 353, 595.
61 Xu W Q, Xia C Y, He F, et al. Environmental Science & Technology, 2024, 58(38), 17147.
62 Yoon S Y, Kim M J, Kim H W, et al. Journal of Hazardous Materials, 2023, 452, 131197.
63 Yang X, Yang W, Chen Y, et al. Environmental Science and Pollution Research, 2023, 30(43), 97298.
64 Wei Q, Li H, Guo Y, et al. Journal of Alloys and Compounds, 2023, 946, 169309.
65 Boasiako C A, Zhou Z, Huo X, et al. Journal of Hazardous Materials, 2023, 446, 130661.
66 Lodaya K M, Tang B Y, Bisbey R P, et al. Nature Catalysis, 2024, 7(3), 262.
67 Shen Z, Fang M, Tang L, et al. Environmental Research, 2024, 241, 117616.
68 Wang W, Wang K, Xu L, et al. Chemosphere, 2021, 263, 128187.
69 Youn G, Hong I, Song B, et al. Solar RRL, 2024, 8(3), 2300880.
70 Moon H S, Song B, Jeon J, et al. Applied Catalysis B, Environmental, 2023, 339, 123185.
71 Zhang Y, Liu C, Zhou Y, et al. Chemical Engineering Journal, 2023, 457, 140992.
72 Shi H, Li C, Zheng R, et al. Journal of Cleaner Production, 2023, 407, 137088.
73 Gorski G, Fisher A T, Beganskas S, et al. Environmental Science & Technology, 2019, 53(16), 9491.
74 Wang J, Chu L. Biotechnology Advances, 2016, 34(6), 1103.
75 Cao Q, Li X Z, Xie Z J, et al. Bioresource Technology, 2021, 341, 125761.
76 Jiang Z, Liu R, Wang Y, et al. Separation and Purification Technology, 2024, 336, 126306.
77 Li Y, Yang B, Liu H, et al. Chemical Engineering Journal, 2024, 484, 149477.
78 Li H, Han Y, Zhang Y, et al. Environmental Technology, 2024, 45(27), 5982.
79 Wu J, Yin Y, Wang J. International Journal of Hydrogen Energy, 2018, 43(1), 1.
80 Liang Y, Pan Z, Feng H, et al. Journal of Environmental Chemical Engineering, 2022, 10(6), 108959.
81 Su C, Puls R W. Environmental Science & Technology, 2004, 38(9), 2715.
82 Ma H, Gao X, Chen Y, et al. Environmental Pollution, 2021, 287, 117668.
83 Yang M, Luo Q, Fan Z, et al. Environmental Science & Technology, 2024, 58(32), 14225.
84 Ge S J, Yang D X, Lyu J, et al. Chemical Industry and Engineering Progress, 2024, 43(4), 2135(in Chinese).
葛四杰, 杨大鑫, 吕君, 等. 化工进展, 2024, 43(4), 2135.
85 Li Y, Zhang H M, Tian Y. Chemical Engineering Journal, 2024, 496, 154328.
86 Zhou Q, Jia L, Li Y, et al. Environmental Science & Technology, 2024, 58(23), 10149
87 Zhan M, Zeng W, Wu C, et al. Water Research, 2024, 255, 121507.
88 Li R, Hou Y N, Li H, et al. Chemical Engineering Journal, 2024, 496, 154266.
89 Zhong L, Yang S S, Sun H J, et al. Water Research, 2024, 256, 121600.
90 Miao Y Q, Zhu W H, Shen Y T, et al. China Environmental Science, 2024, 44(5), 2514(in Chinese).
苗雅琴, 朱卫红, 沈昱廷, 等. 中国环境科学, 2024, 44(5), 2514.
91 Zhou T, Hu W, Lai D Y F, et al. Water Research, 2024, 254, 121387.
92 Dai N, Yao D, Li Y, et al. Bioresource Technology, 2024, 395, 130348.
93 Lu R, Zhang Q, Chen Y, et al. Chemical Engineering Journal, 2024, 479, 147379.
[1] 苏友义, 张明, 陶雯艳, 杨萍萍, 郭星辰, 邓徐, 谢佳乐. 硝酸盐催化还原合成氨研究进展[J]. 材料导报, 2025, 39(7): 24040024-12.
[2] 梁彩凤, 赵港, 吴琪. 铜基催化剂在电催化硝酸根还原制氨中的应用[J]. 材料导报, 2025, 39(15): 24050205-8.
[3] 田欢, 赵卓, 赖莉, 张梦龙. 含铊废水的处理方法的研究现状及发展趋势[J]. 材料导报, 2018, 32(23): 4100-4106.
[4] 李晨旭, 彭伟, 方振东, 刘杰. 过渡金属氧化物非均相催化过硫酸氢盐(PMS)活化及氧化降解水中污染物的研究进展[J]. 《材料导报》期刊社, 2018, 32(13): 2223-2229.
[5] 刘梁, 徐云泽, 王晓娜, 贺丽敏, 黄一. 碳钢焊缝在混凝土孔隙液中的优先腐蚀行为与亚硝酸盐缓蚀剂作用效果*[J]. 《材料导报》期刊社, 2017, 31(18): 119-124.
[6] 王英伍, 杨皓, 宁平, 李凯, 李山, 黄彬. 污泥基活性炭的制备及其在环境污染治理中的应用进展*[J]. 《材料导报》期刊社, 2017, 31(15): 50-59.
[1] . Effect of Annealing on Crystalline Structure and Low-temperature Toughness of
Polypropylene Random Copolymer Dedicated Pipe Materials
[J]. Materials Reports, 2017, 31(4): 65 -69 .
[2] YAN Xin, HUI Xiaoyan, YAN Congxiang, AI Tao, SU Xinghua. Preparation and Visible-light Photocatalytic Activity of Graphite-like Carbon Nitride Two-dimensional Nanosheets[J]. Materials Reports, 2017, 31(9): 77 -80 .
[3] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[4] WANG Xinyu, ZHEN Siqi, DONG Zhengchao, ZHONG Chonggui. Electrocaloric Effects of Ferroelectric Materials: an Overview[J]. Materials Reports, 2017, 31(19): 13 -18 .
[5] WANG Bin, ZHANG Lele, DU Jinjing, ZHANG Bo, LIANG Lisi, ZHU Jun. Applying Electrothermal Reduction Method to the Preparation of V-Ti-Cr-Fe Alloys Serving as Hydrogen Storage Materials[J]. Materials Reports, 2018, 32(10): 1635 -1638 .
[6] GAO Wei, ZHAO Guangjie. Synergetic Oxidation Modification of Wooden Activated Carbon Fiber with Nitric Acid and Ceric Ammonium Nitrate[J]. Materials Reports, 2018, 32(9): 1507 -1512 .
[7] ZHANG Tiangang,SUN Ronglu,AN Tongda,ZHANG Hongwei. Comparative Study on Microstructure of Single-pass and Multitrack TC4 Laser Cladding Layer on Ti811 Surface[J]. Materials Reports, 2018, 32(12): 1983 -1987 .
[8] WANG Bilei, LI Yongcan, SONG Changjiang. A State-of-the-art Review on Yield Point Elongation Phenomenon of Low Carbon Steel[J]. Materials Reports, 2018, 32(15): 2659 -2665 .
[9] ZHU Yaming, ZHAO Chunlei, LIU Xian, ZHAO Xuefei, GAO Lijuan, CHENG Junxia. Study on the Basic Physical Properties of Toluene Soluble Extracted from Coal Tar Pitch[J]. Materials Reports, 2019, 33(2): 368 -372 .
[10] ZHOU Chao, LI Detian, ZHOU Hui, ZHANG Kaifeng, CAO Shengzhu. Non-evaporable Getter Films for Vacuum Packaging of MEMSDevices: an Overview[J]. Materials Reports, 2019, 33(3): 438 -443 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed