Please wait a minute...
材料导报  2025, Vol. 39 Issue (24): 24050143-8    https://doi.org/10.11896/cldb.24050143
  无机非金属及其复合材料 |
水-压-应力波作用下磁铁石英岩动态损伤演化与损伤模型
孙海宽1,2,3,4, 甘德清1,2,3,4,*, 刘志义1,2,3,4, 薛振林1,2,3,4
1 华北理工大学矿业工程学院,河北 唐山 063210
2 华北理工大学矿产资源绿色开发与生态修复协同创新中心,河北 唐山 063210
3 华北理工大学河北省矿业开发与安全技术实验室,河北 唐山 063210
4 华北理工大学河北省矿山绿色智能开采技术创新中心,河北 唐山 063210
Dynamic Damage Evolution and Damage Model Characteristics of Magnetite Quartzite Under the Effect of Water-Pressure-Stress Wave
SUN Haikuan1,2,3,4, GAN Deqing1,2,3,4,*, LIU Zhiyi1,2,3,4, XUE Zhenlin1,2,3,4
1 School of Mining Engineering, North China University of Science and Technology, Tangshan 063210, Hebei, China
2 Collaborative Innovation Center of Green Development and Ecological Restoration of Mineral Resources, North China University of Science and Technology, Tangshan 063210, Hebei, China
3 Hebei Province Key Laboratory of Mining Development and Security Technology, North China University of Science and Technology, Tangshan 063210, Hebei, China
4 Mine Green Intelligent Mining Technology Innovation Center of Hebei Province, North China University of Science and Technology, Tangshan 063210, Hebei, China
下载:  全 文 ( PDF ) ( 29515KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 在深地具有矿井涌水环境赋存的磁铁石英岩,受水浸与水压的耦合作用,其内部会产生损伤,导致力学性能发生改变。为探讨水-压-应力波作用下磁铁石英岩的动态损伤演化特性,对磁铁石英岩进行真空饱和处理,采用分离式霍普金森压杆(SHPB)试验系统开展动态冲击试验。结果表明:在水-压-应力波作用下,真空饱和作用对磁铁石英岩具有一定的弱化效应,磁铁石英岩的动态峰值强度随浸水压力增加而先减小后增大,整体上呈减小趋势;真空饱和作用导致磁铁石英岩的破坏程度加剧,破碎粒度减小,但应力波是主导磁铁石英岩破碎程度的主要因素;随浸水压力增加,磁铁石英岩的裂纹萌生时间缩短,扩展数量增加,破坏形式由沿晶破坏逐渐转变为穿晶破坏及粉化破坏,并且试样的吸收能与入射能占比近似呈先增大后减小的变化特征。建立了水-压-应力波作用下磁铁石英岩动态损伤本构模型,将理论曲线与测试曲线进行对比,验证了模型具有较高的适用性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
孙海宽
甘德清
刘志义
薛振林
关键词:  磁铁石英岩  水-压-应力波损伤效应  能量特征  损伤本构模型    
Abstract: The magnetite quartzite in deep ground with mine water inrush environment is damaged by the coupling effect of water immersion and water pressure, which leads to the change of mechanical properties. In order to explore the dynamic damage evolution characteristics of magnetite quartzite under the effect of water-pressure-stress wave, the magnetite quartzite treated by vacuum saturation was tested by dynamic impact test through the split Hopkinson pressure bar (SHPB) test system. The results show that under the effect of water-pressure-stress wave, vacuum saturation has a certain weakening effect on magnetite quartzite, and the dynamic peak strength of magnetite quartzite decreases first and then increases with the increase of water immersion pressure, showing an overall decreasing trend. The failure degree of magnetite quartzite is aggravated by vacuum saturation, and the particle size of fracture is reduced, but the stress wave is the main factor leading to the fracture degree of magnetite quartzite. With the increase of immersion pressure, the initiation time of cracks in magnetite quartzite decreases and the number of cracks increases. The failure mode gradually changes from intergranular failure to transgranular failure and powder failure, and the proportion of absorbed energy and incident energy of the sample approximately increases first and then decreases. A constitutive model for dynamic damage of magnetite quartzite under water-pressure-stress waves was established and verified by comparing the theoretical stress-strain curve with the test stress-strain curve, showing that the model has high applicability.
Key words:  magnetite quartzite    effect of water-pressure-stress wave    energy evolution characteristic    damage constitutive model
出版日期:  2025-12-25      发布日期:  2025-12-17
ZTFLH:  TD853  
基金资助: 国家自然科学基金(52074124)
通讯作者:  *甘德清,华北理工大学矿业工程学院教授、博士研究生导师,研究方向为采矿工艺理论与技术、资源绿色开发与智能采矿。g15613873876@163.com   
作者简介:  孙海宽,博士,华北理工大学矿业工程学院讲师。研究方向为资源绿色开发与智能采矿。
引用本文:    
孙海宽, 甘德清, 刘志义, 薛振林. 水-压-应力波作用下磁铁石英岩动态损伤演化与损伤模型[J]. 材料导报, 2025, 39(24): 24050143-8.
SUN Haikuan, GAN Deqing, LIU Zhiyi, XUE Zhenlin. Dynamic Damage Evolution and Damage Model Characteristics of Magnetite Quartzite Under the Effect of Water-Pressure-Stress Wave. Materials Reports, 2025, 39(24): 24050143-8.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24050143  或          https://www.mater-rep.com/CN/Y2025/V39/I24/24050143
1 Zhou X M, Xu Y, Liu S J, et al. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(8), 1611(in Chinese).
周晓敏, 徐衍, 刘书杰, 等. 岩石力学与工程学报, 2020, 39(8), 1611.
2 Feng G R, Fan Y J, Wang P F, et al. Chinese Journal of Rock Mechanics and Engineering, 2023, 42(S1), 3377(in Chinese).
冯国瑞, 樊一江, 王朋飞, 等. 岩石力学与工程学报, 2023, 42(S1), 3377.
3 Zhao Z H. Chinese Journal of Rock Mechanics and Engineering, 2021, 40(S2), 3063(in Chinese).
赵志宏. 岩石力学与工程学报, 2021, 40(S2), 3063.
4 Voznesenskii A S, Krasilov M N, Kutkin Y O, et al. International Journal of Fatigue, 2017, 97, 70.
5 Liu Z Y, Gan D Q, Yu Z H, et al. Chinese Journal of Rock Mechanics and Engineering, 2022, 41(S1), 2869(in Chinese).
刘志义, 甘德清, 于泽皞, 等. 岩石力学与工程学报, 2022, 41(S1), 2869.
6 Pang N B, Yang Y K. Mining Research and Development, 2023, 43(10), 119(in Chinese).
庞宁波, 杨永康. 矿业研究与开发, 2023, 43(10), 119.
7 Ge J J, Xu Y, Cheng L, et al. Journal of Vibration and Shock, 2023, 42(4), 54(in Chinese).
葛进进, 徐颖, 程琳, 等. 振动与冲击, 2023, 42(4), 54.
8 Yang J X, Huang S L, Liu Z X. Journal of Changjiang River Scientific Research Institute, 2019, 36(2), 63(in Chinese).
杨静熙, 黄书岭, 刘忠绪. 长江科学院院报, 2019, 36(2), 63.
9 Fan Y L, Cao J W, Yu S, et al. Journal of Geomechanics, 2023, 29(6), 786(in Chinese).
范玉璐, 曹佳文, 余顺, 等. 地质力学学报, 2023, 29(6), 786.
10 Zhao H L, Qiu Y, Liang H A, et al. Journal of Mining and Strata Control Engineering, 2023, 5(6), 53(in Chinese).
赵红亮, 仇岩, 梁海安, 等. 采矿与岩层控制工程学报, 2023, 5(6), 53.
11 Peellage W H, Fatahi B, Rasekh H. International Journal of Fatigue, 2023, 181, 108121.
12 Mao H, Xu N, Zhou Z, et al. Tunnelling and Underground Space Technology, 2024, 143, 105497.
13 Li J, Zhang R G, Yu Y, et al. Chinese Journal of Rock Mechanics and Engineering, 2023, 42(S2), 4109(in Chinese).
李季, 张荣光, 余洋, 等. 岩石力学与工程学报, 2023, 42(S2), 4109.
14 Zhu G G, Jiang Q P, Wu Y P, et al. Journal of Mining & Safety Engineering, 2021, 38(2), 370(in Chinese).
朱广安, 蒋启鹏, 伍永平, 等. 采矿与安全工程学报, 2021, 38(2), 370.
15 Gao F, Gan D Q, Zhang J H, et al. Journal of Harbin Institute of Technology, 2020, 52(4), 160(in Chinese).
高锋, 甘德清, 张静辉, 等. 哈尔滨工业大学学报, 2020, 52(4), 160.
16 Li Z J, Hao J W, Gan D Q, et al. Journal of Harbin Institute of Technology, 2020, 52(4), 150(in Chinese).
李占金, 郝家旺, 甘德清, 等. 哈尔滨工业大学学报, 2020, 52(4), 150.
17 Yao Q L, Wang W N, Yang S Y, et al. Journal of China Coal Society, 2021, 46(9), 2910(in Chinese).
姚强岭, 王伟男, 杨书懿, 等. 煤炭学报, 2021, 46(9), 2910.
18 Yao Q L, Zhu L, Huang Q X, et al. Journal of Mining and Safety Engineering, 2019, 36(5), 1034(in Chinese).
姚强岭, 朱柳, 黄庆享, 等. 采矿与安全工程学报, 2019, 36(5), 1034.
19 Zheng W, Jiang J, Tao K. Measurement, 2018, 125, 577.
20 Feng F, Chen S, Han Z, et al. Engineering Fracture Mechanics, 2023, 284, 109265.
21 Cao S, Yilmaz E, Song W D. Construction and Building Materials, 2018, 186, 892.
22 Hou Y Q, Yin S H, Yang S X, et al. Journal of Building Engineering, 2023, 66, 105912.
23 Shen M X, Zhao Y, Bi J, et al. Journal of Building Engineering, 2024, 82, 108336.
24 Shen M X, ZhaO Y, Bi J. Construction and Building Materials, 2024, 414, 134970.
25 Chai Y G, Liu L S, Zeng P, et al. Engineering Blasting, 2022, 28(5), 23(in Chinese).
柴耀光, 刘连生, 曾鹏, 等. 工程爆破, 2022, 28(5), 23.
[1] 权文立, 黄炜, 唐达, 孙文博, 苗欣蔚, 侯莉娜. 蒸压砂加气混凝土损伤本构模型研究[J]. 材料导报, 2025, 39(14): 24050166-6.
[2] 崔涛, 何浩祥, 闫维明, 钱增志, 周大兴. 混杂纤维水泥基复合材料受压损伤本构模型及试验验证[J]. 材料导报, 2019, 33(20): 3413-3418.
[1] LI Jiawei, LI Dayu, GU Yixin, XIAO Jinkun, ZHANG Chao, ZHANG Yanjun. Research Progress of Regulating Anatase Phase of TiO2 Coatings Deposited by Thermal Spray[J]. Materials Reports, 2017, 31(3): 26 -31 .
[2] . Adhesion in SBS Modified Asphalt Containing Warm Mix Additive and
Aggregate System Based on Surface Free Theory
[J]. Materials Reports, 2017, 31(4): 115 -120 .
[3] JIA Zhihong, WENG Yaoyao, DING Lipeng, CHENG Tao, LIU Yingying, LIU Qing. Sn Microalloying for Aluminum Alloys: Strengthening Effects and Mechanisms[J]. Materials Reports, 2017, 31(9): 123 -127 .
[4] WANG Ru, ZHANG Shaokang, WANG Gaoyong. Influence and Mechanism of Mineral Admixtures on Setting and Hardening of Styrene-Butadiene Copolymer/Cement Composite Cementitious Material[J]. Materials Reports, 2017, 31(24): 69 -73 .
[5] DING Yutian, DOU Zhengyi, GAO Yubi, GAO Xin, LI Haifeng, LIU Dexue. In-situ Observation of Solidification Process of GH3625 Superalloy at Different Cooling Rates[J]. Materials Reports, 2017, 31(24): 150 -155 .
[6] JIN Chenxin, XU Guojun, LIU Liekai, YUE Zhihao, LI Xiaomin,TANG Hao, ZHOU Lang. Effects of Bulk Electrical Resistivity and Doping Type of Silicon on the Electrochemical Performance of Lithium-ion Batteries with Silicon/Graphite Anodes[J]. Materials Reports, 2017, 31(22): 10 -14 .
[7] LIU Guoyi, LIU Yuanjun, ZHAO Xiaoming. A Study on Protecting Efficiency to the Radiative Heat of the Outer Fabric for the Fire Proximity Suits[J]. Materials Reports, 2017, 31(22): 116 -120 .
[8] ZHANG Wangxi, WANG Yanzhi, LIANG Baoyan, LI Qiquan, LUO Wei, SUN Changhong, CHENG Xiaozhe, SUN Yuzhou. Review on the Development of Nanodiamonds Used as Functional Materials[J]. Materials Reports, 2018, 32(13): 2183 -2188 .
[9] YANG Fang, ZHANG Long, YU Kun, QI Tianjiao, GUAN Debin. Recent Advances in Humidity Sensitivity of Graphene[J]. Materials Reports, 2018, 32(17): 2940 -2948 .
[10] TIAN Yaqiang, LI Wang, ZHENG Xiaoping, WEI Yingli, SONG Jinying, CHEN Liansheng. Application of Alloy Elements in Quenching and Partitioning Steel:an Overview[J]. Materials Reports, 2019, 33(7): 1109 -1118 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed