Please wait a minute...
材料导报  2025, Vol. 39 Issue (19): 24070047-6    https://doi.org/10.11896/cldb.24070047
  无机非金属及其复合材料 |
基于Mohr-Coulomb和Drucker-Prager模型的黄土剪切特性研究
游庆龙1, 熊秘1, 陈世业2,*, 黄之懿3, 黄文旭1, 赵胜前1, 程明4, 蒋勇4
1 长安大学公路学院,西安 710064
2 北京航天发射技术研究所,北京 100076
3 同济大学民航飞行区设施耐久与运行安全重点实验室,上海 201804
4 安康市交通建设投资集团有限公司,陕西 安康 725099
Shear Characterization of Loess Based on Mohr-Coulomb and Drucker-Prager Models
YOU Qinglong1, XIONG Mi1, CHEN Shiye2,*, HUANG Zhiyi3, HUANG Wenxu1, ZHAO Shengqian1, CHENG Ming4, JIANG Yong4
1 School of Highway, Chang’an University, Xi’an 710064, China
2 Beijing Institute of Space Launch Technology, Beijing 100076, China
3 Key Laboratory of Infrastructure Durability and Operation Safety in Airfield of CAAC, Tongji University, Shanghai 201804, China
4 Ankang Transportation Construction Investment Group Corporation, Ankang 725099, Shaanxi, China
下载:  全 文 ( PDF ) ( 13169KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为探究路基黄土的剪切特征,获取Mohr-Coulomb(M-C)模型参数内摩擦角φ和黏聚力c,Ducker-Prager(D-P)模型参数β和d,控制压实度为94%,含水率ω为9.5%、11.5%、13.5%、15.5%、19.5%,利用GDS(Geotechnical digital systems,GDS)静三轴仪在100、200、300 kPa围压下开展重塑黄土不固结不排水三轴剪切试验,并进行有限元模拟,分析模型在表征黄土剪切特性时的误差。研究结果表明:当ω为9.5%时,100 kPa和200 kPa围压下土样应力应变曲线出现“软化”现象,当ω在11.5%~19.5%之间时,所有围压下土样应力应变均出现“硬化”现象。土的内摩擦角φ和黏聚力c,β和d均随含水率增大而减小,随围压增大而增大;当含水率大于最佳含水率时,黏聚力c和d会迅速减小。有限元模拟对比M-C和D-P模型,发现M-C模型能更好地反映黄土的剪切特性。最终得到了M-C和D-P模型的力学参数,并给出拟合公式,可预测压实度为94%、含水率在9.5%~19.5%范围内土样的模型参数,为工程建设提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
游庆龙
熊秘
陈世业
黄之懿
黄文旭
赵胜前
程明
蒋勇
关键词:  黄土路基  三轴试验  剪切特性  Mohr-Coulomb  Ducker-Prager    
Abstract: In order to investigate the shear characteristics of loess, the Mohr-Coulomb (M-C) model parameters of internal friction angle φ and cohesion c, and the Ducker-Prager (D-P) model parameters of β and d were obtained, and the water content ω was controlled to be 9.5%, 11.5%, 13.5%, 15.5%, and 19.5%, and the static triaxial instrument of GDS(Geotechnical digital systems, GDS) was used to conduct unconsolidated and undrained triaxial shear tests under 100, 200, and 300 kPa pressures, finite element simulations were performed to analyze the error of the model in characterizing the shear properties of loess. The results showed that when ω was 9.5%, the stress-strain curves of soil samples under the 100 kPa and 200 kPa pressures showed "softening" phenomenon, and when ω was in the range of 11.5%—19.5%, the stress-strain curves of soil samples under all pressures showed "hardening" phenomenon. The internal friction angle φ and the cohesion c, β and d of the soil decreased with the increase of water content and increased with the increase of the perimeter pressure; when the water content was greater than the optimum water content, the cohesion c and d would decrease rapidly. Finite element simulation compared the M-C and D-P models and found that the M-C model could better reflect the loess shear characteristics. The mechanical parameters of the M-C and D-P models were finally obtained, and the fitting equations were given to predict the model parameters of soil samples with a compaction degree of 94% and water content in the range of 9.5%—19.5%, which could provide reference for engineering construction.
Key words:  loess roadbed    triaxial test    shear characteristic    Mohr-Coulomb    Drucker-Prager
出版日期:  2025-10-10      发布日期:  2025-09-24
ZTFLH:  TU411  
基金资助: 某基础科研项目(2021602);陕西省交通运输厅科研项目(22-22k)
通讯作者:  *陈世业,博士,高级工程师,从事发射系统设计等领域的研究。371299421@qq.com   
作者简介:  游庆龙,长安大学公路学院副教授、博士研究生导师。目前主要从事机场道面结构力学行为、道面养护及绿色低碳道路等方面的研究。
引用本文:    
游庆龙, 熊秘, 陈世业, 黄之懿, 黄文旭, 赵胜前, 程明, 蒋勇. 基于Mohr-Coulomb和Drucker-Prager模型的黄土剪切特性研究[J]. 材料导报, 2025, 39(19): 24070047-6.
YOU Qinglong, XIONG Mi, CHEN Shiye, HUANG Zhiyi, HUANG Wenxu, ZHAO Shengqian, CHENG Ming, JIANG Yong. Shear Characterization of Loess Based on Mohr-Coulomb and Drucker-Prager Models. Materials Reports, 2025, 39(19): 24070047-6.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24070047  或          https://www.mater-rep.com/CN/Y2025/V39/I19/24070047
1 Liu D S. Material composition and structure of loess, Science Press, China, 1966, pp. 4 (in Chinese).
刘东升. 黄土的物质成分和结构, 科学出版社, 1966, pp. 4.
2 Feng L, Zhang M S, Hu W, et al. Rock and Soil Mechanics, 2019, 40(1), 235 (in Chinese).
冯立, 张茂省, 胡炜, 等. 岩土力学, 2019, 40(1), 235.
3 Li X A, Sun J, Ren H, et al. Environmental Earth Sciences, 2022, 81(10), 290.
4 Zhang L K, Ding X S, Fan P P, et al. Materials Reports, 2025, 39(3), 107 (in Chinese).
张凌凯, 丁旭升, 樊培培, 等. 材料导报, 2025, 39(3), 107.
5 Jian T, Kong L, Bai W, et al. Frontiers in Earth Science, 2022, 10, 923358.
6 Liu H, Zhang W Y, Feng Y Z, et al. China Earthquake Engineering Journal, 2024, 45(5), 1172 (in Chinese).
刘红, 张吾渝, 冯永珍, 等. 地震工程学报, 2024, 45(5), 1172.
7 Wang Y, Yao Y P, Hu Y D, et al. Journal of Xi'an University of Architecture & Technology(Natural Science Edition), 2022, 54(3), 325 (in Chinese).
王燕, 姚仰平, 胡玉定, 等. 西安建筑科技大学学报(自然科学版), 2022, 54(3), 325.
8 Wu X Y, Liang Q G, Niu F J, et al. Chinese Journal of Underground Space and Engineering, 2017, 13(6), 1457 (in Chinese).
吴旭阳, 梁庆国, 牛富俊, 等. 地下空间与工程学报, 2017, 13(6), 1457.
9 Liu X, Miao X Q, Huang L, et al. Journal of Jilin University(Earth Science Edition), 2023, 53(5), 1499 (in Chinese).
刘鑫, 苗雪青, 黄良, 等. 吉林大学学报(地球科学版), 2023, 53(5), 1499.
10 Mo T F, Guo M X, Lou Z K, et al. China Rural Water and Hydropower, 2018(4), 87 (in Chinese).
莫腾飞, 郭敏霞, 娄宗科, 等. 中国农村水利水电, 2018(4), 87.
11 Hu Z Q, Zhang T, Zhu Y Y, et al. Rock and Soil Mechanics, 2006, 27(S2), 1103 (in Chinese).
胡再强, 张腾, 朱轶韵, 等. 岩土力学, 2006, 27(S2), 1103.
12 Abbo A J, Sloan S W. Computers & Structures, 1995, 54(3), 427.
13 Sui C Y, Shen Y S, Wen Y M, et al. Shock and Vibration, 2021, 2021, 1.
14 Jia S P, Chen W Z, Yang J P, et al. Rock and Soil Mechanics, 2010, 31(7), 2051 (in Chinese).
贾善坡, 陈卫忠, 杨建平, 等. 岩土力学, 2010, 31(7), 2051.
15 Feng J X, Pan P. Engineering Mechanics, DOI:10.6052/j.issn.1000-4750.2023.10.0804 (in Chinese).
冯捷讯, 潘鹏. 工程力学, DOI:10.6052/j.issn.1000-4750.2023.10.0804.
16 Zhou Y Q, Sheng Q, Liu F X, et al. Rock and Soil Mechanics, 2016, 37(6), 1657 (in Chinese).
周永强, 盛谦, 刘芳欣, 等. 岩土力学, 2016, 37(6), 1657.
17 Ministry of Transportation of the People's Republic of China. Test met-hods of soils for highway engineering,JTG 3430-2020. People's Transportation Press, China, 2020 (in Chinese).
中华人民共和国交通运输部. 公路土工试验规程,JTG 3430-2020. 人民交通出版社, 2020.
[1] 杨海华, 杨武, 刘汉龙, 马俊玲, 王景. 基于PPR数据建模技术的砂砾石料应力应变规律拟合[J]. 材料导报, 2023, 37(13): 21020115-6.
[1] LI Jiawei, LI Dayu, GU Yixin, XIAO Jinkun, ZHANG Chao, ZHANG Yanjun. Research Progress of Regulating Anatase Phase of TiO2 Coatings Deposited by Thermal Spray[J]. Materials Reports, 2017, 31(3): 26 -31 .
[2] . Adhesion in SBS Modified Asphalt Containing Warm Mix Additive and
Aggregate System Based on Surface Free Theory
[J]. Materials Reports, 2017, 31(4): 115 -120 .
[3] JIA Zhihong, WENG Yaoyao, DING Lipeng, CHENG Tao, LIU Yingying, LIU Qing. Sn Microalloying for Aluminum Alloys: Strengthening Effects and Mechanisms[J]. Materials Reports, 2017, 31(9): 123 -127 .
[4] WANG Ru, ZHANG Shaokang, WANG Gaoyong. Influence and Mechanism of Mineral Admixtures on Setting and Hardening of Styrene-Butadiene Copolymer/Cement Composite Cementitious Material[J]. Materials Reports, 2017, 31(24): 69 -73 .
[5] DING Yutian, DOU Zhengyi, GAO Yubi, GAO Xin, LI Haifeng, LIU Dexue. In-situ Observation of Solidification Process of GH3625 Superalloy at Different Cooling Rates[J]. Materials Reports, 2017, 31(24): 150 -155 .
[6] JIN Chenxin, XU Guojun, LIU Liekai, YUE Zhihao, LI Xiaomin,TANG Hao, ZHOU Lang. Effects of Bulk Electrical Resistivity and Doping Type of Silicon on the Electrochemical Performance of Lithium-ion Batteries with Silicon/Graphite Anodes[J]. Materials Reports, 2017, 31(22): 10 -14 .
[7] LIU Guoyi, LIU Yuanjun, ZHAO Xiaoming. A Study on Protecting Efficiency to the Radiative Heat of the Outer Fabric for the Fire Proximity Suits[J]. Materials Reports, 2017, 31(22): 116 -120 .
[8] ZHANG Wangxi, WANG Yanzhi, LIANG Baoyan, LI Qiquan, LUO Wei, SUN Changhong, CHENG Xiaozhe, SUN Yuzhou. Review on the Development of Nanodiamonds Used as Functional Materials[J]. Materials Reports, 2018, 32(13): 2183 -2188 .
[9] YANG Fang, ZHANG Long, YU Kun, QI Tianjiao, GUAN Debin. Recent Advances in Humidity Sensitivity of Graphene[J]. Materials Reports, 2018, 32(17): 2940 -2948 .
[10] TIAN Yaqiang, LI Wang, ZHENG Xiaoping, WEI Yingli, SONG Jinying, CHEN Liansheng. Application of Alloy Elements in Quenching and Partitioning Steel:an Overview[J]. Materials Reports, 2019, 33(7): 1109 -1118 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed