Please wait a minute...
材料导报  2025, Vol. 39 Issue (15): 24020034-14    https://doi.org/10.11896/cldb.24020034
  高分子与聚合物基复合材料 |
紫外光固化抗菌涂料的研究进展
张悦1, 吴秫芃1, 崔锡文1, 张煜1, 蒋莉1, 袁妍1,2,*
1 苏州科技大学化学与生命科学学院,江苏 苏州 215009
2 苏州科技大学中国石油和化工行业太阳能电池电极材料重点实验室,江苏 苏州 215009
Research Progress on UV Curable Coatings with Antibacterial Properties
ZHANG Yue1, WU Shupeng1, CUI Xiwen1, ZHANG Yu1, JIANG Li1, YUAN Yan1,2,*
1 School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou 215009, Jiangsu, China
2 Key Laboratory of Advanced Electrode Materials for Novel Solar Cells for Petroleum and Chemical Industry of China, Suzhou University of Science and Technology, Suzhou 215009, Jiangsu, China
下载:  全 文 ( PDF ) ( 36189KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 涂料常用作为保护材料,但由于不同使用环境的影响,微生物沉积不可避免,易导致涂层磨损甚至破坏,因此抗菌涂料在保护基材和减少材料浪费中起着关键作用。本文简要介绍了涂料和紫外光固化技术,回顾了抗菌涂料的优势与不足。根据抗菌剂在光固化涂料中的引入方式,涂料可分为结构型和共混型两类。文章详细讨论了近年来常用的抗菌成分、合成与改性方法及其抗菌效果,并分析了涂层的其他性能(如耐磨性、抗氧化性、防污性)及潜在应用场景。本综述为理解抗菌紫外光固化涂料提供了全面视角,并为涂层合成及性能提升提供了参考,展望了其未来应用前景。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张悦
吴秫芃
崔锡文
张煜
蒋莉
袁妍
关键词:  紫外光固化涂料  抗菌性能  抗菌剂合成  抗菌剂改性    
Abstract: Coatings are commonly used as protective materials to facing varying environmental conditions, so microbial deposition is inevitable, which will lead to coating wear and even damage. Therefore, antimicrobial coatings play a crucial role in protecting substrates and reducing material waste. This summary briefly introduced coatings and UV curing technology, reviewed the advantages and limitations of antimicrobial coatings. according to the incorporation method of antimicrobial agents in UV-curable coatings, the coatings can be categorized into two categories:structural type and blending type. The commonly used antimicrobial components, synthesis and modification methods, and their antimicrobial effects in recent years were discussed in detail here. Additionally, other properties, such as wear resistance, antioxidant properties, and anti-fouling characteristics, and potential application scenarios of the coatings were analyzed. This work should provide a comprehensive perspective on antimicrobial UV-curable coatings and offers references for coating synThesis and performance enhancement, with an outlook on future application prospects.
Key words:  UV curable coating    antimicrobial property    antibacterial synthesis    antibacterial modification
出版日期:  2025-08-10      发布日期:  2025-08-13
ZTFLH:  TQ637  
基金资助: 国家自然科学基金青年项目(22202142);江苏省高等学校自然科学研究面上项目(21KJB430007)
通讯作者:  袁妍,博士,苏州科技大学化学与生命科学学院副教授,硕士研究生导师。主要研究方向为紫外光固化功能涂层,包括导电传感涂层、石墨烯/聚合物复合功能涂层、抗菌涂层等。yuanyanustc@163.com   
作者简介:  张悦,苏州科技大学化学与生命科学学院硕士研究生,在袁妍教授的指导下开展光固化抗菌涂层的研究。
引用本文:    
张悦, 吴秫芃, 崔锡文, 张煜, 蒋莉, 袁妍. 紫外光固化抗菌涂料的研究进展[J]. 材料导报, 2025, 39(15): 24020034-14.
ZHANG Yue, WU Shupeng, CUI Xiwen, ZHANG Yu, JIANG Li, YUAN Yan. Research Progress on UV Curable Coatings with Antibacterial Properties. Materials Reports, 2025, 39(15): 24020034-14.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24020034  或          https://www.mater-rep.com/CN/Y2025/V39/I15/24020034
1 Yazdanpanah F, Hamblin M R, Rezaei N. Life Sciences, 2020, 256, 117900.
2 Liu H C. Study on preparation and properties of UV curable antibacterial polyurethane composite. Master's Thesis, Soochow University, China, 2023 (in Chinese).
刘化超. 光固化抗菌聚氨酯复合材料的制备及性能研究. 硕士学位论文, 苏州大学, 2023.
3 Meng Z. Preparation and antibacterial property of photocurable ε-poly-l-lysine hydrogel. Master's Thesis, Taiyuan University of Technology, China, 2021 (in Chinese).
孟朕. 光固化ε-聚赖氨酸水凝胶的制备及其抗菌性能研究. 硕士学位论文, 太原理工大学, 2021.
4 Yuan N. Preparation of organic-inorganic hybrid reinforced waterborne polyurethane and its antibacterial properties. Master's Thesis, Taiyuan University of Technology, China, 2022 (in Chinese).
袁楠. 有机无机杂化增强水性聚氨酯的制备及其抗菌性研究. 硕士学位论文, 太原理工大学, 2022.
5 Tong M Y, Sun G Q, Liu R. Polymeric Materials Science and Engineering, 2022, 38(3), 96 (in Chinese).
童梦玥, 孙冠卿, 刘仁. 高分子材料科学与工程, 2022, 38(3), 96.
6 Sangermano M, Razza N, Crivello J V. Macromolecular Materials and Engineering, 2014, 299(7), 775.
7 Zhou F C. Preparation of functional silicone photosensitive resin and its application in 3D printing. Master's Thesis, Hangzhou Normal University, China, 2021 (in Chinese).
周丰城. 功能性有机硅光敏树脂的制备及其在3D打印中应用研究. 硕士学位论文, 杭州师范大学, 2021.
8 Liu Z X. China Coatings, 2022, 37(5), 1 (in Chinese).
刘泽曦. 中国涂料, 2022, 37(5), 1.
9 Zhu J. High-Technology & Commercialization, 2020(9), 53 (in Chinese).
祝军. 高科技与产业化, 2020(9), 53.
10 Duan H, Li X L. Shanghai Coatings, 2020, 58(4), 35 (in Chinese).
段华, 李小林. 上海涂料, 2020, 58(4), 35.
11 Corrigan N, Yeow J, Judzewitsch P, et al. Angewandte Chemie International Edition, 2019, 58(16), 5170.
12 Qi X H. Preparation and properties of chalcone-terminated waterborne polyurethane. Master's Thesis, Fuyang Normal University, China, 2023 (in Chinese).
齐晓慧. 查尔酮封端光固化水性聚氨酯的制备与性能. 硕士学位论文, 阜阳师范大学, 2023.
13 Zhang D X. Study on light curing dental adhesive with combined antibacterial activities. Master's Thesis, Beijing University of Chemical Technology, China, 2022 (in Chinese).
张代兴. 复合抗菌型光固化齿科粘接剂的研究. 硕士学位论文, 北京化工大学, 2022.
14 Li Y C. Modifying photocurable resin composite with Sr or Zn-doped hydroxyapatite for dental restoration. Master's Thesis, Beijing University of Chemical Technology, China, 2021 (in Chinese).
李业晨. 锶, 锌掺杂羟基磷灰石纳米颗粒改性齿科光固化树脂的研究. 硕士学位论文, 北京化工大学, 2021.
15 Adekanye A, Mahamood R M, Akinlabi E T, et al. Materiali in Tehnolog, 2017, 51, 709.
16 Rosu D, Mustata F R, Rosu L, et al. ACS Applied Polymer Materials, 2021, 3(12), 6303.
17 Rummel C D, Jahnke A, Gorokhova E, et al. Environmental Science & Technology Letters, 2017, 4(7), 258.
18 Khaneghah A M, Hashemi S M B, Limbo S. Food and Bioproducts Processing, 2018, 111, 1.
19 Ge H W. Preparation of photosensitive antibacterial SiO2 particles and their application in coatings. Master's Thesis, Jiangnan University, China, 2018 (in Chinese).
葛惠文. 光敏性抗菌SiO2粒子的制备及其在涂层中的应用. 硕士学位论文, 江南大学, 2018.
20 Cheng Q L. Study on the design, preparation and performance of novel functional polymer antibacterial coating materials. Ph. D. Thesis, Jilin University, China, 2021 (in Chinese).
程秋丽. 新型功能性高分子抗菌涂层材料的设计、制备及其性能研究. 博士学位论文, 吉林大学, 2021.
21 Xu X Z. Preparation of quaternary ammonium salt of epoxy resin and its application in antibacterial coatings. Master's Thesis, Wuhan Polytechnic University, China, 2021 (in Chinese).
徐先洲. 环氧树脂季铵盐制备及其在抗菌涂料中的应用. 硕士学位论文, 武汉轻工大学, 2021.
22 Zhu J Y, Li T, Ding C Y, et al. Journal of Functional Polymers, 2020, 33(5), 94 (in Chinese).
朱嘉莹, 李婷, 丁重阳, 等. 功能高分子学报, 2020, 33(5), 94.
23 Fu Z. Journal of Guangdong Industry Polytechnic, 2017, 16(2), 5 (in Chinese).
傅中. 广东轻工职业技术学院学报, 2017, 16(2), 5.
24 Zhang L X, Li T, Dong W F. Journal of Functional Polymers, 2022, 35(6), 575 (in Chinese).
张乐兴, 李婷, 东为富. 功能高分子学报, 2022, 35(6), 575.
25 Zhou C, Li Y H, Jiang Z H, et al. Chinese Chemical Letters, 2016, 27(5), 681.
26 Zhao J, Millians W, Tang S, et al. ACS Applied Materials & Interfaces, 2015, 7(33), 18467.
27 Chen R, Li T, Zhang Q, et al. New Journal of Chemistry, 2017, 41(18), 9762.
28 Liu R, Zheng J, Li Z, et al. Rsc Advances, 2015, 5(43), 34199.
29 Beyler-Çiğil A, Birtane H, Şen F, et al. Materials Today Communications, 2021, 27, 102463.
30 Ge H, Zhang J, Yuan Y, et al. Progress in Organic Coatings, 2017, 106, 20.
31 Ji Q, Xu D, Li X L, et al. Shanghai Textile Science & Technology, 2022, 50(11), 1 (in Chinese).
吉强, 许多, 李秀丽, 等. 上海纺织科技, 2022, 50(11), 1.
32 Zhang R J. Preparation and application of photocured ionic liquids/graphene composite conductive coating. Master's Thesis, Jiangnan University, China, 2019 (in Chinese).
张荣金. 光固化离子液体/石墨烯复合导电涂层的制备及其应用研究. 硕士学位论文, 江南大学, 2019.
33 Moradali M F, Rehm B H. Nature Reviews Microbiology, 2020, 18(4), 195.
34 Cuthbert T J, Guterman R, Ragogna P J, et al. Journal of Materials Chemistry B, 2015, 3(8), 1474.
35 Cuthbert T J, Harrison T D, Ragogna P J, et al. Journal of Materials Chemistry B, 2016, 4(28), 4872.
36 Ran B, Zhang Z, Yin L, et al. Journal of Coatings Technology and Research, 2018, 15, 345.
37 Şen F, Kocatürk E, Çakmakçı E, et al. Reactive and Functional Polymers, 2022, 170, 105149.
38 Zhang G, Jiang S, Gao Y, et al. Macromolecular Chemistry and Physics, 2017, 218(19), 1700222.
39 Ding S. Shandong Textile Science & Technology, 2010, 51(5), 50 (in Chinese).
丁帅. 山东纺织科技, 2010, 51(5), 50.
40 Wang C, Liang R M, Li J, et al. Modern Chinese Medicine, 2023, 25(12), 2643 (in Chinese).
王灿, 梁如铭, 李健, 等. 中国现代中药, 2023, 25(12), 2643.
41 Hu Y J, Du L, Hu J, et al. Plastics, 2024, 53(2), 20 (in Chinese).
胡娅洁, 杜乐, 胡健, 等. 塑料, 2024, 53(2), 20.
42 Long L. Construction of hydrophobical tannic acid coating and their antibacterial and hemostatic applications. Ph. D. Thesis, Beijing University of Chemical Technology, China, 2022 (in Chinese).
龙立. 疏水改性单宁酸涂层材料的构建及其抗菌与止血应用研究. 博士学位论文, 北京化工大学, 2022.
43 Liu R, Zheng J, Guo R, et al. Industrial & Engineering Chemistry Research, 2014, 53(27), 10835.
44 Ning Y W, Su D, Fu Y N, et al. Food Science, 2020, 41(19), 31137 (in Chinese).
宁亚维, 苏丹, 付浴男, 等. 食品科学, 2020, 41(19), 31137.
45 Chen X X, Zou S F, Zhang S, et al. Polymer Materials Science & Engineering, 2023, 39(4), 78 (in Chinese).
陈茜茜, 邹淑芬, 张爽, 等. 高分子材料科学与工程, 2023, 39(4), 78.
46 Dixit A, Wazarkar K, Sabnis A S. Pigment & Resin Technology, 2021, 50(6), 533.
47 Zhang X W, Zhang J H, Li W L, et al. Modern Food Science & Technology, 2023, 39(8), 30 (in Chinese).
张晓婉, 张嘉慧, 李威龙, 等. 现代食品科技, 2023, 39(8), 30.
48 Liang X, Hu J, Wang L C, et al. Food Research & Development, 2020, 41(15), 193 (in Chinese).
梁勋, 胡杰, 汪乐川, 等. 食品研究与开发, 2020, 41(15), 193.
49 Si Q, Hu Y, Dai J, et al. Food Research & Development, 2024, 45(4), 68 (in Chinese).
司奇, 胡雨, 戴静, 等. 食品研究与开发, 2024, 45(4), 68.
50 Liu K, Su Z, Miao S, et al. Biochemical Engineering Journal, 2016, 113, 107.
51 Don T M, Chen C C, Lee C K, et al. Journal of Biomaterials Science, Polymer Edition, 2005, 16(12), 1503.
52 Wyszogrodzka G, Marszałek B, Gil B, et al. Drug Discovery Today, 2016, 21(6), 1009.
53 Yan L, Gopal A, Kashif S, et al. Chemical Engineering Journal, 2022, 435, 134975.
54 Sadeghi K, Seo J. Surfaces and Interfaces, 2022, 28, 101573.
55 Özdemir Y, Birtane H, Beyler-Çiğil A. International Journal of Biological Macromolecules, 2023, 245, 125516.
56 Shen M, Forghani F, Kong X, et al. Comprehensive Reviews in Food Science and Food Safety, 2020, 19(4), 1397.
57 Hu Q, Nie Y, Xiang J, et al. International Journal of Biological Macromolecules, 2023, 234, 123691.
58 Yin I X, Zhang J, Zhao I S, et al. International Journal of Nanomedicine, 2020, 15, 2555.
59 Kędziora A, Speruda M, Krzyżewska E, et al. International Journal of Molecular Sciences, 2018, 19(2), 444.
60 Yao X Y, Tang X N, Wang X N, et al. Materials Reports, 2021, 35(1), 1105 (in Chinese).
姚希燕, 唐晓宁, 王晓楠, 等. 材料导报, 2021, 35(1), 1105.
61 Fan C, Ni Q, Zhu T, et al. New Chemical Materials, 2022, 50(9), 229 (in Chinese).
樊晨, 倪琦, 朱婷, 等. 化工新型材料, 2022, 50(9), 229.
62 Oktay B, Kayaman-Apohan N. Advances in polymer technology, 2013, 32(2), 21341.
63 Oktay B, Kayaman-Apohan N. Journal of Coatings Technology and Research, 2013, 10, 785.
64 Wu Y, Wu X, Yang F, et al. Journal of Applied Polymer Science, 2021, 138(30), 50717.
65 Stroyuk A, Ermokhina N, Korzhak A, et al. Theoretical and Experimental Chemistry, 2015, 51, 183.
66 Li X, Wang S, Xie J, et al. International Journal of Polymeric Materials and Polymeric Biomaterials, 2019, 68(6), 319.
67 Modjinou T, Rodriguez-Tobias H, Morales G, et al. RSC Advances, 2016, 6(91), 88135.
68 Chang C W, Lu K T. Polymers, 2021, 13(18), 3022.
69 Do T V, Ha M N, Nguyen T A, et al. Adsorption Science & Technology, 2021, 2021, 7387160.
70 Chitichotpanya C, Khwanmuang P, Yamprayoonswat W, et al. Journal of Industrial Textiles, 2022, 51, 6996S.
71 Birtane H, Şen F, Bozdğa B, et al. Polymer Bulletin, 2021, 78(7), 3577.
72 Hou Y Y, Chen H, Feng S S, et al. Journal of Oral Science Research, 2023, 39(5), 422 (in Chinese).
侯妍妍, 陈欢, 冯杉杉, 等. 口腔医学研究, 2023, 39(5), 422.
73 Milanović M, DJurić L, Milošević N, et al. Environmental Science and Pollution Research, 2023, 30(10), 25119.
74 Gozzelino G, Dell'Aquila A G, Romero D. Journal of Coatings Technology and Research, 2010, 7, 167.
75 Glaive A S, Modjinou T, Versace D L, et al. ACS Sustainable Chemistry & Engineering, 2017, 5(3), 2320.
76 Sun G, Ge H, Luo J, et al. Progress in Organic Coatings, 2019, 135, 19.
77 Wang X, Feng Y, Zhang L, et al. Chemical Engineering Journal, 2020, 382, 122927
78 Modjinou T, Versace D L, Abbad-Andaloussi S, et al. Materials Today Communications, 2017, 12, 19.
79 Modjinou T, Versace D L, Abbad-Andallousi S, et al. ACS Sustainable Chemistry & Engineering, 2015, 3(6), 1094.
80 Ai X, Pan J, Xie Q, et al. Polymer Chemistry, 2021, 12(31), 4524.
81 Cui Y, Wei B, Wang Y, et al. Progress in Organic Coatings, 2022, 163, 106656.
82 Liu Y, Xu W Z, Charpentier P A. Progress in Organic Coatings, 2020, 142, 105589.
83 Banerjee S L, Potluri P, Singha N K. Colloids and Surfaces A, Physicochemical and Engineering Aspects, 2019, 566, 176.
[1] 谢雨兮, 吴双双, 方晓阳, 徐伟. 天然高分子络合无机纳米复合抗菌剂研究进展[J]. 材料导报, 2025, 39(13): 24040133-11.
[2] 李亮, 刘淑萍, 裴斐斐, 杨雷锋, 刘让同. 载中药聚乳酸多孔纳米纤维医用敷料[J]. 材料导报, 2024, 38(10): 22080169-7.
[3] 郭远来, 缪婉, 钱继东, 熊开琴, 涂秋芬. “一步法”构建基于Zn2+的抗菌表面[J]. 材料导报, 2023, 37(12): 22030058-6.
[4] 惠爱平, 马梦婷, 杨芳芳, 康玉茹, 王爱勤. 季铵化壳聚糖改性ZnO/凹凸棒石纳米复合材料及其抗菌性能[J]. 材料导报, 2022, 36(3): 21110131-7.
[5] 李森, 王清涛, 于华芹, 徐会君, 杜庆洋. 固相离子交换法制备高效载银分子筛抗菌剂及其抗菌性能[J]. 《材料导报》期刊社, 2018, 32(4): 539-544.
[6] 郑康, 郑敏, 黄鹏杰, 赵松铭, 沈凯旋. Cu2O/TiO2复合物的制备及抗菌和除氨气性能[J]. 材料导报, 2018, 32(20): 3504-3509.
[1] . Effect of Annealing on Crystalline Structure and Low-temperature Toughness of
Polypropylene Random Copolymer Dedicated Pipe Materials
[J]. Materials Reports, 2017, 31(4): 65 -69 .
[2] YAN Xin, HUI Xiaoyan, YAN Congxiang, AI Tao, SU Xinghua. Preparation and Visible-light Photocatalytic Activity of Graphite-like Carbon Nitride Two-dimensional Nanosheets[J]. Materials Reports, 2017, 31(9): 77 -80 .
[3] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[4] WANG Xinyu, ZHEN Siqi, DONG Zhengchao, ZHONG Chonggui. Electrocaloric Effects of Ferroelectric Materials: an Overview[J]. Materials Reports, 2017, 31(19): 13 -18 .
[5] WANG Bin, ZHANG Lele, DU Jinjing, ZHANG Bo, LIANG Lisi, ZHU Jun. Applying Electrothermal Reduction Method to the Preparation of V-Ti-Cr-Fe Alloys Serving as Hydrogen Storage Materials[J]. Materials Reports, 2018, 32(10): 1635 -1638 .
[6] GAO Wei, ZHAO Guangjie. Synergetic Oxidation Modification of Wooden Activated Carbon Fiber with Nitric Acid and Ceric Ammonium Nitrate[J]. Materials Reports, 2018, 32(9): 1507 -1512 .
[7] ZHANG Tiangang,SUN Ronglu,AN Tongda,ZHANG Hongwei. Comparative Study on Microstructure of Single-pass and Multitrack TC4 Laser Cladding Layer on Ti811 Surface[J]. Materials Reports, 2018, 32(12): 1983 -1987 .
[8] WANG Bilei, LI Yongcan, SONG Changjiang. A State-of-the-art Review on Yield Point Elongation Phenomenon of Low Carbon Steel[J]. Materials Reports, 2018, 32(15): 2659 -2665 .
[9] ZHU Yaming, ZHAO Chunlei, LIU Xian, ZHAO Xuefei, GAO Lijuan, CHENG Junxia. Study on the Basic Physical Properties of Toluene Soluble Extracted from Coal Tar Pitch[J]. Materials Reports, 2019, 33(2): 368 -372 .
[10] ZHOU Chao, LI Detian, ZHOU Hui, ZHANG Kaifeng, CAO Shengzhu. Non-evaporable Getter Films for Vacuum Packaging of MEMSDevices: an Overview[J]. Materials Reports, 2019, 33(3): 438 -443 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed