Please wait a minute...
材料导报  2025, Vol. 39 Issue (13): 24060166-20    https://doi.org/10.11896/cldb.24060166
  无机非金属及其复合材料 |
固态锂离子电池电解质材料应用性能的研究进展
张笑儒1,2, 宋静2,*, 罗来马1,3,*, 孙宏骞2, 赵聪聪2, 田硕2, 田亮亮4, 吴玉程1,3
1 合肥工业大学材料科学与工程学院,合肥 230009
2 中国科学院过程工程研究所,战略金属资源绿色循环利用国家工程研究中心,北京 100190
3 高性能铜合金材料及成形加工教育部工程研究中心,合肥 230009
4 重庆文理学院电子信息与电气工程学院,重庆 402160
Research Progress on Applicative Performance of Electrolyte Materials for Solid-state Lithium-ion Batteries
ZHANG Xiaoru1,2, SONG Jing2,*, LUO Laima1,3,*, SUN Hongqian2, ZHAO Congcong2, TIAN Shuo2, TIAN Liangliang4, WU Yucheng1,3
1 School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009, China
2 National Engineering Research Center for Green Recycling of Strategic Metal Resources, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
3 Engineering Research Center of High Performance Copper Alloy Materials and Processing, Ministry of Education, Hefei 230009, China
4 School of Electronic Information and Electrical Engineering, Chongqing University of Arts and Sciences, Chongqing 402160, China
下载:  全 文 ( PDF ) ( 59310KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 随着新能源汽车和5G通信技术的快速发展,对锂离子电池作为动力源的综合性能提出了更高的要求。在众多锂离子电池技术的研发中,固态锂离子电池因其卓越的能量密度和安全性而受到广泛关注。固态电解质是锂离子电池的关键组成部分,其性能直接影响着电池的整体性能,设计和制造具有优良性能的固态电解质是推动锂离子电池实际应用的关键。本文分别对无机固态电解质、聚合物固态电解质和复合固态电解质中Li+传输机制进行了介绍,结合近年发表的文献,全面综述了研究人员利用离子掺杂和引入新的制备技术等方法对固态电解质性能进行改善的研究进展,总结了不同类型固态电解质在国内外各企业中的应用情况,最后对固态电解质存在的挑战和未来的发展趋势进行了展望。本文旨在为开发综合性能优异的新型固态电解质材料提供参考,促进固态电解质的产业化快速发展。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张笑儒
宋静
罗来马
孙宏骞
赵聪聪
田硕
田亮亮
吴玉程
关键词:  固态锂离子电池  固态电解质  Li+传输机制  离子电导率  电化学稳定性  循环性能    
Abstract: With the rapid development of new energy vehicles and 5G communication technology, higher requirements have been put forward for the comprehensive performance of lithium-ion as a power source. In the research and development of many lithium-ion battery technologies, so-lid-state lithium-ion batteries have attracted extensive attention due to their excellent energy density and safety. As a key component of lithium batteries, the performance of solid-state electrolytes directly affects the overall performance of the battery, and the design and manufacture of so-lid-state electrolytes with excellent performance is crucial for promoting the practical application of lithium-ion batteries. In this paper, the Li+ transport mechanism in inorganic solid-state electrolytes, polymer solid-state electrolytes and composite solid-state electrolytes is introduced, combined with the literature in recent years, the research progress of researchers using ion doping and the introduction of new preparation techniques to improve the performance of solid-state electrolytes is comprehensively reviewed, the application of different types of solid-state electrolytes in domestic and foreign enterprises is summarized, and finally the challenges and future development trends of solid-state electrolytes are prospected. The aim of this review is to provide useful information for developing new solid-state electrolyte materials with excellent comprehensive perfor-mance, so as to promote the rapid industrialization of solid-state electrolytes.
Key words:  solid-state lithium-ion battery    solid-state electrolyte    Li+ transport mechanism    ionic conductivity    electrochemical stability    cyclic performance
出版日期:  2025-07-10      发布日期:  2025-07-21
ZTFLH:  TM911.3  
基金资助: 在渝高校与中科院所属院所合作项目(HZ2021013);重庆市自然科学基金创新发展联合基金(CSTB2023NSCQ-LZX0045)
通讯作者:  *宋静,博士,副研究员,硕士研究生导师。2008年取得天津大学博士学位后进入中国科学院过程工程研究所进行博士后研究,出站后留所工作。主要研究方向:(1)锆资源清洁高效综合利用;(2)二氧化锆粉体材料的可控制备;(3)绿色制造系统集成。jsong@ipe.ac.cn
罗来马,浙江大学博士,合肥工业大学教授、博士研究生导师,主要从事核聚变材料、粉末冶金与高导热铜基材料研究。luolaima@126.com   
作者简介:  张笑儒,2021年6月毕业于大连海事大学,获得专业硕士学位。现为合肥工业大学材料科学与工程学院能源动力专业博士研究生,在中国科学院过程工程研究所联合培养,并在罗来马教授和宋静副研究员的指导下进行研究,主要研究领域为固态电解质。
引用本文:    
张笑儒, 宋静, 罗来马, 孙宏骞, 赵聪聪, 田硕, 田亮亮, 吴玉程. 固态锂离子电池电解质材料应用性能的研究进展[J]. 材料导报, 2025, 39(13): 24060166-20.
ZHANG Xiaoru, SONG Jing, LUO Laima, SUN Hongqian, ZHAO Congcong, TIAN Shuo, TIAN Liangliang, WU Yucheng. Research Progress on Applicative Performance of Electrolyte Materials for Solid-state Lithium-ion Batteries. Materials Reports, 2025, 39(13): 24060166-20.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24060166  或          https://www.mater-rep.com/CN/Y2025/V39/I13/24060166
1 Olabi A G, Abdelghafar A A, Soudan B, et al.Ain Shams Engineering Journal, 2024, 15(2), 102429.
2 Zhou S, Han Z, Wang X, et al.Applied Clay Science, 2024, 251, 107329.
3 Adenusi H, Passerini S.Reference Module in Chemistry, Molecular Sciences and Chemical Engineering, DOI:10.1016/B978-0-323-96022-9.00176-6.
4 Ishfaq H A, Cardona C C, Tchernychova E, et al.Energy Storage Materials, 2024, 69, 103375.
5 Kim M, Cakmakci N, Song H, et al.Materials Research Bulletin, 2024, 170, 112588.
6 Rana S, Thakur R C, Dosanjh H S.Solid State Ionics, 2023, 400, 116340.
7 Mageto T, Bhoyate S D, De Souza F M, et al.Journal of Energy Storage, 2022, 55, 105688.
8 Xu L, Lu Y, Zhao C Z, et al.Advanced Energy Materials, 2021, 11(4), 202360.
9 Zhang S S, Ervin M H, Xu K, et al.Electrochimica Acta, 2004, 49(20), 3339.
10 Kwak H, Wang S, Park J, et al. ACS Energy Letters, 2022, 7(5), 1776.
11 Ramakumar S, Deviannapoorani C, Dhivya L, et al.Progress in Materials Science, 2017, 88, 325.
12 Wang C Y, Wang C, Li M N, et al.Materials Today, 2024, 72, 235.
13 Zhang B K, Tan R, Yang L Y, et al.Energy Storage Materials, 2018, 10, 139.
14 Zhao Q, Stalin S, Zhao C Z, et al.Nature Reviews Materials, 2020, 5, 229.
15 Gao Z H, Sun H B, Fu L, et al.Advanced Materials, 2018, 30(17), 1705702.
16 Xiao W, Wang J Y, Fan L, et al.Energy Storage Materials, 2019, 19, 379.
17 Zhang S Y, Li Y R, Xing T, et al.New Carbon Materials, 2022, 37(2), 358.
18 Le H T T, Kalubarme R S, Ngo D T, et al.Journal of Power Sources, 2015, 274, 1188.
19 He X N, Li S Y, Cao G Q, et al.Scripta Materialia, 2020, 185, 134.
20 Karuthedath P A, Pazhaniswamy S, Dekanovsky L, et al.Journal of Power Sources, 2023, 565, 232907.
21 Abhilash K P, Selvin P C, Nalini B, et al.Ceramics International, 2013, 39(2), 947.
22 Hu Z X, Sheng J L, Chen J H, et al.New Journal of Chemistry, 2018, 42(11), 9074.
23 Ling M E, Zhu X H, Jiang Y, et al.Ionics, 2016, 22, 2151.
24 Nikodimos Y, Tsai M C, Abrha L H, et al.Journal of Materials Chemistry A, 2020, 8(22), 11302.
25 Kwon W J, Kim H, Jung K N, et al.Journal of Materials Chemistry A, 2017, 5(13), 6257.
26 Moriwake H, Gao X, Kuwabara A, et al.Journal of Power Sources, 2015, 276, 203.
27 Chen K, Huang M, Shen Y, et al.Solid State Ionics, 2013, 235, 8.
28 Zhang H, Hao S M, Lin J P.Journal of Alloys and Compounds, 2017, 704, 109.
29 Naranjo B J M, Martinez C C S, Pandit B, et al.Journal of the European Ceramic Society, 2023, 43(11), 4826.
30 Lu X J, Hai J K, Zhang F, et al.Ceramics International, 2022, 48(2), 2203.
31 Zheng Z F, Fang H Z, Yang F, et al.Journal of the Electrochemical Society, 2014, 161(4), A473.
32 Kravchyk K V, Brotons G, Belous A G, et al.Materials Letters, 2014, 137, 182.
33 Tan F H, An H, Li N, et al.Nanoscale, 2021, 13(26), 11518.
34 Lin X, Wang H Q, Du H W, et al.ACS Applied Materials & Interfaces, 2016, 8(2), 1486.
35 Symington A R, Molinari M, Dawson J A, et al.Journal of Materials Chemistry A, 2021, 9(10), 6487.
36 Wang T, De Oliveira R B, Andreeta M R B, et al.Crystal Growth & Design, 2021, 21(4), 2093.
37 Yao R, Liu Z G, Ding Z Y, et al.Journal of Alloys and Compounds, 2020, 844, 156023.
38 Paengson S, Pilasuta P, Mori D, et al.Journal of Alloys and Compounds, 2024, 979, 173512.
39 Wang L X, Shi Z M, Feng X M, et al.Journal of Alloys and Compounds, 2024, 981, 173720.
40 Lu J Y, Li Y, Ding Y S.Materials Research Bulletin, 2021, 133, 111019.
41 Wu Z K, Wu Z Z, Wang Z H, et al.Corrosion Science, 2023, 224, 111473.
42 Lu X J, Li X Y, Duan M Y, et al.Journal of Rare Earths, 2023, 41(5), 758.
43 Lu X J, Duan M Y, LI J.Ceramics International, 2023, 49(15), 24981.
44 Thangadurai V, Narayanan S, Pinzaru D.Chemical Society Reviews, 2014, 43(13), 4714.
45 Aote M, Deshpande A V.Ceramics International, 2023, 49(24), 40011.
46 Aote M, Deshpande A V.Journal of Physics and Chemistry of Solids, 2024, 190, 111980.
47 Liu X J, Huang Z Y, Yan J, et al.Solid State Ionics, 2024, 409, 116515.
48 Guo S C, Li Y, Zhang H, et al.Ceramics International, 2024, 50(1), 559.
49 Alizadeh S M, Moghim I, Golmohammad M.Solid State Ionics, 2023, 397, 116260.
50 Yan R T, Cheng X, Zhang D Y, et al.Journal of Energy Storage, 2024, 87, 111481.
51 Hong H Y P.Materials Research Bulletin, 1978, 13(2), 117.
52 Knauth P.Solid State Ionics, 2009, 180(14-16), 911.
53 Woo S, Kang B.Journal of Materials Chemistry A, 2022, 10(43), 23185.
54 Hagman L O, Kierkegaard P, Karvonen P, et al.Acta Chemica Scandinavica, 1968, 22, 1822.
55 Goodenough J B, Hong H Y P, Kafalas J A.Materials Research Bulletin, 1976, 11(2), 203.
56 Aono H, Sugimoto E, Sadaoka Y, et al.Bulletin of the Chemical Society of Japan, 1992, 65(8), 2200.
57 Pu X R, Cheng X, Yan Q H, et al.Ceramics International, 2024, 50(6), 9007.
58 Yin J H, Zhang H B, Zeng Z C, et al.Journal of Alloys and Compounds, 2024, 988, 174346.
59 Khatua S, Rao Y B, Achary K R, et al.Surfaces and Interfaces, 2023, 41, 103212.
60 Valiyaveettil S S, Gĺuchowski P, López A P, et al.Materialia, 2024, 33, 101999.
61 Yan B G, Wang Y C, Ren H L, et al.International Journal of Electrochemical Science, 2022, 17(5), 220513.
62 Li S X, Shang F, Wang Y, et al.Solid State Ionics, 2024, 406, 116460.
63 Yu C E, Gregory D H, Liu W R.Surface and Coatings Technology, 2024, 481, 130671.
64 Zhang Z L, Chen Z Y, Zhu H L, et al.Journal of Alloys and Compounds, 2024, 979, 173610.
65 Yin F S, Zhang Z J, Fang Y L, et al.Journal of Energy Storage, 2023, 73, 108950.
66 Lee D, Lee H, Song T, et al.Advanced Energy Materials, 2022, 12(27), 2200948.
67 Yang X F, Luo J, Sun X L.Chemical Society Reviews, 2020, 49(7), 2140.
68 Wu Z, Li X, Zheng C, et al.Electrochemical Energy Reviews, 2023, 6, 10.
69 Shen B, Li L, Yao X, et al.Ceramics International, 2024, 50(4), 7150.
70 Zhang J K, Lv J C, Lu W, et al.Chemical Engineering Journal, 2024, 487, 150452.
71 Wan Z J, Chen X Z, Zhou Z Q, et al.Journal of Energy Chemistry, 2024, 88, 28.
72 Nachimuthu S, Cheng H J, Lai H, et al.Materials Today Chemistry, 2022, 26, 101223.
73 Jang Y J, Seo H, Lee Y S, et al.Journal of Alloys and Compounds, 2024, 989, 174294.
74 Rajagopal R, Subramanian Y, Jung Y J, et al.Journal of Materials Science & Technology, 2024, 191, 8.
75 Indrawan R F, Matsuda R, Hikima K, et al.Solid State Ionics, 2023, 401, 116344.
76 Singer C, Töpper H C, Günter F J, et al.Procedia CIRP, 2021, 104, 56.
77 Ohtomo T, Hayashi A, Tatsumisago M, et al.Journal of Non-Crystalline Solids, 2013, 364, 57.
78 Minami K, Hayashi A, Ujiie S, et al.Solid State Ionics, 2011, 192(1), 122.
79 Tufail M K, Ahmad N, Zhou L, et al.Chemical Engineering Journal, 2021, 425, 130535.
80 Weppner W, Huggins R A.Physics Letters A, 1976, 58(4), 245.
81 Li X, Liang J, Yang X, et al.Energy & Environmental Science, 2020, 13(5), 1429.
82 Chun G H, Shim J H, Yu S.ACS Applied Materials & Interfaces, 2022, 14(1), 1241.
83 Kim K, Park D, Jung H G, et al.Chemistry of Materials, 2021, 33(10), 3669.
84 Park D, Park H, Lee Y, et al.ACS Applied Materials & Interfaces, 2020, 12(31), 34806.
85 Wang S, Bai Q, Nolan A M, et al.Angewandte Chemie International Edition, 2019, 58(24), 8039.
86 Jeon H J, Subramanian Y, Ryu K S.Journal of Power Sources, 2024, 602, 234343.
87 Jiang Z, Liu C, Yang J, et al.Chinese Chemical Letters, DOI:10.1016/j.cclet.2024.109741.
88 Wang Q T, Ma X F, Liu Q, et al.Journal of Alloys and Compounds, 2023, 969, 172479.
89 Chen X, Jia Z Q, Lv H M, et al.Journal of Power Sources, 2022, 545, 231939.
90 Wen S Q, Sheng H L, Zhang Y H, et al.Journal of Alloys and Compounds, 2024, 984, 137973.
91 Yu T, Wang L, Sun Q, et al.Materials Today Chemistry, 2023, 30, 101510.
92 Liu S, Ao Z R, Zou Y L, et al.Materials Letters, 2023, 351, 134981.
93 Qin W S, Yang Q H, He Y L, et al.Mechanics of Materials, 2023, 185, 104773.
94 Usta S, Çelik M, Çetinkaya T.Journal of Power Sources, 2023, 580, 233404.
95 Ye M, Chen J H, Deng H J, et al.Chemical Engineering Journal, 2024, 488, 151108.
96 Jiang Y J, Xu C, Xu K, et al.Chemical Engineering Journal, 2022, 442, 136245.
97 Lemaalem M, Carbonniere P.Solid State Ionics, 2023, 399, 116304.
98 Liang Y, Zhang J, Guan S, et al.Journal of Materiomics, 2024, 10(4), 880.
99 Jing Y T, Lv Q, Chen Y J, et al.Journal of Energy Chemistry, 2024, 94, 158.
100 Li J N, Zheng W J, Zhu L, et al.Journal of Alloys and Compounds, 2023, 960, 170640.
101 Zhang X, Wang X, Tang H, et al.Journal of Energy Storage, 2024, 88, 111461.
102 Na D, Kampara R K, Yu D, et al.Journal of Alloys and Compounds, 2024, 970, 172559.
103 Shah D K, Son Y H, Lee H R, et al.Chemical Physics Letters, 2020, 754, 137756.
104 Xu H, Zhang X, Jiang J Y, et al.Solid State Ionics, 2020, 347, 115227.
105 Da H, Pan S S, Li J, et al.Energy Storage Materials, 2023, 56, 457.
106 Hallinan D T, Balsara N P.Annual Review of Materials Research, 2013, 43, 503.
107 Yue L, Ma J, Zhang J, et al.Energy Storage Materials, 2016, 5, 139.
108 Irfan M, Atif M, Yang Z H, et al.Journal of Power Sources, 2021, 486, 229378.
109 Zhang Q Q, Liu K, Ding F, et al.Nano Research, 2017, 10(12), 4139.
110 Wang N, Wei Y T, Yu S, et al.Journal of Materials Science & Technology, 2024, 183, 206.
111 Kim H, Kim J, Lee J H, et al.Energy Storage Materials, 2024, 67, 103260.
112 Chen J C, Wang H, Bai Y R, et al.Journal of Power Sources, 2024, 614, 234973.
113 Ma Y X, Wan J Y, Yang Y F, et al.Advanced Energy Materials, 2022, 12(15), 2103720.
114 Qin S P, Wu M, Zhao H S, et al.Journal of Materials Science & Technology, 2024, 199, 197.
115 Yang T Q, Wang C, Zhang W K, et al.Journal of Energy Chemistry, 2023, 84, 189.
116 Daems K, Yadav P, Dermenci K B, et al.Renewable and Sustainable Energy Reviews, 2024, 191, 114136.
117 Fu J, Li Z, Zhou X, et al.Materials Advances, 2022, 3(9), 3809.
118 Xie W, Gong Z, Li J, et al.Solid State Ionics, 2024, 410, 116527.
119 Song X, Zhang T, Fan R, et al.Solid State Ionics, 2023, 403, 116410.
120 Li H T, Liu J, Deng F, et al.Journal of Power Sources, 2024, 602, 234372.
121 Li H Y, Du G H, Liang H T, et al.Journal of Alloys and Compounds, 2023, 969, 172418.
122 Tang H, Zhu M, Wang J, et al.Next Materials, 2024, 4, 100173.
[1] 吴学虎, 孙立贤, 徐芬, 李彬, 方淞文, 张靖, 陈翔, 宋领君, 卢俊铭, 高源, 杜毛湛, 徐如丹. 具有P和S双空位的镍钴纳米花复合材料用作超级电容器电极的研究[J]. 材料导报, 2025, 39(7): 24030138-7.
[2] 刘庆, 欧阳雪琼, 刘文财, 吕洋, 王双喜. 流延工艺制备氧化锆燃料电池薄膜的研究进展[J]. 材料导报, 2025, 39(10): 24020149-10.
[3] 张文霞, 贾岩, 程海峰, 刘东青. 全固态电致变色器件研究进展[J]. 材料导报, 2025, 39(1): 24100119-11.
[4] 魏一帆, 夏会聪, 张佳楠. 钠离子存储器件中界面效应作用机制研究[J]. 材料导报, 2024, 38(8): 23120085-9.
[5] 张家庆, 张达, 陈昆峰, 薛冬峰, 梁风. 稀土改性锂基氧化物固态电解质研究现状与展望[J]. 材料导报, 2023, 37(3): 22110300-9.
[6] 陈斐, RannalterLeana Ziwen, 宋尚斌, 曹诗雨, 沈强. 氧化物固体电解质的三维框架结构设计及在全固态锂离子电池中的应用[J]. 材料导报, 2023, 37(19): 22020093-15.
[7] 姚诗言, 曾立艳, 刘军. 高性能锂金属电池负极结构设计及界面强化研究进展[J]. 材料导报, 2022, 36(16): 21010216-11.
[8] 李雅洁, 刘剑, 徐晨, 邢镔. 水热法制备固态电解质Li3xLa2/3-xTiO3粉末[J]. 材料导报, 2021, 35(z2): 8-12.
[9] 刘润泽, 周芬, 王青春, 郜建全, 包金小, 宋希文. 固体氧化物燃料电池用CeO2基电解质的研究进展[J]. 材料导报, 2021, 35(Z1): 29-32.
[10] 贾政刚, 张学习, 钱明芳, 耿林, 熊岳平. 全固态锂硫电池中界面问题的研究现状[J]. 材料导报, 2021, 35(9): 9097-9107.
[11] 郭锦, 李占龙, 连晋毅, 闫晓燕, 张敏刚. 改性乙炔黑对锂硫电池电化学性能的影响[J]. 材料导报, 2020, 34(8): 8020-8024.
[12] 董大彰, 赵梦媛, 解昊, 边凌峰, 杨星, 孟彬. Ba、Ga共掺杂对石榴石型固态电解质Li7La3Zr2O12显微组织及电导率的影响[J]. 材料导报, 2020, 34(4): 4001-4006.
[13] 罗志虹, 冀晨皓, 朱广彬, 李富杰, 周立, 罗鲲. 提高锂电极稳定性的方法及其在锂氧电池中的应用[J]. 材料导报, 2020, 34(19): 19067-19074.
[14] 刘建伟,王嘉楠,朱蕾,延卫. 柔性锂硫电池材料:综述[J]. 材料导报, 2020, 34(1): 1155-1168.
[15] 张文魁, 王佳, 李姣姣, 周晓政, 叶张军, 黄辉, 甘永平, 夏阳. 高安全性PEO-Al2O3复合隔膜的制备及电化学性能[J]. 材料导报, 2019, 33(20): 3512-3519.
[1] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[2] WU Wei, CHEN Shiying, ZONG Mengjingzi. Dielectric Properties and Thermal Stability of Nano-Al2O3/Polyether Sulfone-epoxy Resin Composites[J]. Materials Reports, 2017, 31(20): 21 -24 .
[3] FANG Sheng, HUANG Xuefeng, ZHANG Pengcheng, ZHOU Junpeng, GUO Nan. A Mechanism Study of Loess Reinforcing by Electricity-modified Sodium Silicate[J]. Materials Reports, 2017, 31(22): 135 -141 .
[4] MO Peicheng, WU Yi, YU Wenlin, WANG Jilin, ZOU Zhengguang, ZHONG Shenglin, WANG Peng. In Situ Synthesis of PcBN Composites by cBN-Ti-Al-Si and Their Mechanical Property[J]. Materials Reports, 2018, 32(14): 2355 -2359 .
[5] HU Yaoqiang, CHEN Fajin, LIU Haining, ZHANG Huifang, WU Zhijian, YE Xiushen. Preparation of Poly(N-isopropylacrylamide) Hydrogel and Its Thermally Induced Aggregation Behavior[J]. Materials Reports, 2018, 32(14): 2491 -2496 .
[6] SONG Gang, CHI Jiayu, YU Jingwei, LIU Liming. Corrosion Behavior of Mg-steel Laser-TIG Hybrid Welding Joint[J]. Materials Reports, 2018, 32(16): 2773 -2777 .
[7] HUANG Hui, HAN Jianfeng, WANG Yishun, XIA Yang, ZHANG Jun, GAN Yongping, LIANG Chu, ZHANG Wenkui. Supercritical CO2 Assisting Cladding of LiMnPO4 on the Surface of Li[Li0.2-Mn0.54Co0.13Ni0.13]O2 and Its Electrochemical Properties[J]. Materials Reports, 2018, 32(23): 4072 -4078 .
[8] WANG Zhonghui, XIN Yong. Molecular Dynamics Simulation on the Relationship of Oxygen Diffusion and Polymer Chains Activity[J]. Materials Reports, 2019, 33(8): 1293 -1297 .
[9] CHANG Jingjing. Spin Coating Epitaxial Films[J]. Materials Reports, 2019, 33(12): 1919 -1920 .
[10] ZHUANG Xiaodong, LI Rongxing, YU Xiaohua, XIE Gang, HE Xiaocai, XU Qingxin. Preparation of Lithium Titanate Electrode Materials by Solid Phase Method[J]. Materials Reports, 2019, 33(16): 2654 -2659 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed