Please wait a minute...
材料导报  2025, Vol. 39 Issue (13): 24040201-9    https://doi.org/10.11896/cldb.24040201
  无机非金属及其复合材料 |
基于微元-分层法的受硫酸盐侵蚀隧道衬砌有效强度预测模型
刘新荣1,2,3,*, 庄炀1, 周小涵1,2,3, 梁宁慧1,2,3, 陈海1
1 重庆大学土木工程学院,重庆 400045
2 重庆大学煤矿灾害动力学与控制国家重点实验室,重庆 400045
3 库区环境地质灾害防治国家地方联合工程研究中心(重庆),重庆 400045
Prediction Model of Effective Strength of Sulfate-eroded Tunnel Lining Based on Micro-element-Layering Method
LIU Xinrong1,2,3,*, ZHUANG Yang1, ZHOU Xiaohan1,2,3, LIANG Ninghui1,2,3, CHEN Hai1
1 School of Civil Engineering, Chongqing University, Chongqing 400045, China
2 State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400045, China
3 National Joint Engineering Research Center for Prevention and Control of Environmental Geological Hazards in the TGR Area, Chongqing 400045, China
下载:  全 文 ( PDF ) ( 37147KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 隧道衬砌受硫酸盐侵蚀后的有效强度是评价运营隧道安全性的重要依据,但现有硫酸盐侵蚀试验为缩短试验周期而提高了侵蚀溶液中硫酸盐浓度,导致试验结果无法预测实际运营时间下受硫酸盐侵蚀隧道衬砌的有效强度。针对隧道衬砌的单面腐蚀特点,本工作提出微元-分层法,并以此建立了考虑时间效应的隧道衬砌有效强度预测模型。选取重庆某受硫酸盐侵蚀隧道进行了工程案例分析,通过420 d的室内侵蚀试验和数值模拟,对有效强度预测模型的关键参数进行了求解,并与试验结果进行对比验证。进一步研究了该隧道在整体腐蚀和拱脚局部腐蚀情况下衬砌有效强度的变化规律。研究结果表明:提出的有效强度预测模型能够避免尺寸效应计算腐蚀衬砌的有效强度,其计算结果与试验结果吻合良好;在隧道衬砌有效强度损失阶段,损失速度随运营时间呈先慢后快的特点;在相同情况下,拱脚局部腐蚀时隧道衬砌的有效强度损失小于整体腐蚀。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘新荣
庄炀
周小涵
梁宁慧
陈海
关键词:  隧道工程  有效强度预测  微元-分层法  腐蚀衬砌  硫酸盐单面侵蚀    
Abstract: The effective strength of tunnel lining after sulfate erosion is an important basis for evaluating the safety of service tunnels. However, existing sulfate erosion tests, by increasing the concentration of sulfate solution to shorten the test period, make it impossible to predict the effective strength of tunnel lining under sulfate erosion during actual service period. In view of the characteristics of single-side corrosion of tunnel lining, this work put forward the micro-element-layering method. Based on this method, established the effective strength prediction model of tunnel lining considering the time effect. A sulfate-eroded tunnel in Chongqing was selected as the engineering case for analysis. Through 420 days of indoor corrosion test and numerical simulation, the key parameters of the model were solved. Compared with the test results, the change law of the effective lining strength of the tunnel under the condition of overall corrosion and localized arch foot corrosion was further studied. The results show that the effective strength prediction model proposed can obtain the effective strength of corroded lining unimpeded by the size effect, and the calculated results were in good agreement with the experimental results. In the tunnel lining effective strength loss stage, the loss rate was slow first and then fast. Under the same condition, the effective strength loss of the tunnel lining under localized arch foot corrosion was less than that under overall corrosion.
Key words:  tunneling    effective strength prediction    micro-element-layering method    corroded lining    sulfate unilateral attack
出版日期:  2025-07-10      发布日期:  2025-07-21
ZTFLH:  U458.1  
基金资助: 重庆英才优秀科学家项目(cstc2024ycjh-bgzxm0032);国家自然科学基金(52374079)
通讯作者:  *刘新荣,博士,重庆大学土木工程学院二级教授、博士研究生导师,“新世纪百千万人才工程”国家级人选,享受国务院特殊津贴专家。目前主要从事岩土工程灾变机理与防治技术、隧道与地下工程稳定性等领域教学科研工作。liuxrong@126.com   
引用本文:    
刘新荣, 庄炀, 周小涵, 梁宁慧, 陈海. 基于微元-分层法的受硫酸盐侵蚀隧道衬砌有效强度预测模型[J]. 材料导报, 2025, 39(13): 24040201-9.
LIU Xinrong, ZHUANG Yang, ZHOU Xiaohan, LIANG Ninghui, CHEN Hai. Prediction Model of Effective Strength of Sulfate-eroded Tunnel Lining Based on Micro-element-Layering Method. Materials Reports, 2025, 39(13): 24040201-9.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24040201  或          https://www.mater-rep.com/CN/Y2025/V39/I13/24040201
1 Zhang Z Y, Zou Y, Yang J, et al. Cement & Concrete Composites, 2022, 125, 104299.
2 Liu X R, Zhuang Y, Zhou X H, et al. Underground Space, 2023, 9, 200.
3 Zhang X P, Zhang R L, Yang B, et al. Materials Reports, 2024, 38(5), 209 (in Chinese).
张学鹏, 张戎令, 杨斌, 等. 材料导报, 2024, 38(5), 209.
4 Lu F, Wang H Y, Wang L C, et al. Materials, 2022, 15(13), 4435.
5 Fan J Y, Li M S, Duan P, et al. Materials Reports, 2023, 37(13), 241 (in Chinese).
樊晋源, 李茂森, 段平, 等. 材料导报, 2023, 37(13), 241.
6 Yao W J, Bai M Y, Pang J Y, et al. Environmental Science and Pollution Research, 2022, 29(39), 59173.
7 Zhang Z Y, Zhou J T, Zou Y, et al. Construction and Building Materials, 2020, 235, 117463.
8 Liang N H, Mao J W, Yan R, et al. Case Studies in Construction Materials, 2022, 16, e01065.
9 Sotiradis K, Nikolopoulou E, Tsivilis S. Cement & Concrete Composites, 2012, 34(8), 903.
10 Zhang Z Y, Zhou J T, Yang J, et al. Materials and Structures, 2020, 53(4), 104.
11 Zhang Z Y. Mesoscopic erosion mechanism and shear properties of shotcrete materials under sulfate-containing environments. Ph. D. Thesis, Chongqing University, China, 2019 (in Chinese).
张中亚. 硫酸盐环境喷射混凝土细观侵蚀机理及剪切特性研究. 博士学位论文, 重庆大学, 2019.
12 Liu X R, Zhuang Y, Zhou X H, et al. Frontiers in Materials, 2024, 10, 1323274.
13 Luo W. Study on characteristics of shotcrete under sulfate attack and its influence on tunnel stability. Ph. D. Thesis, Chongqing University, China, 2019 (in Chinese).
罗维. 硫酸盐环境隧道喷射混凝土力学特性及稳定性研究. 博士学位论文, 重庆大学, 2019.
14 Tian H. Study on sulfate transmission-degradation mechanism of concrete under long-term soaking. Master’s Thesis, Shenzhen University, China, 2015 (in Chinese).
田浩. 长期浸泡下混凝土硫酸盐传输—劣化机理研究. 硕士学位论文, 深圳大学, 2015.
15 Yang D Q, Yan C W, Liu S G, et al. Materials, 2022, 15(13), 4663.
16 Cheng H B. Study on the deterioration law and uniaxial compressive constitutive relationship of concrete under sulfate attack. Master’s Thesis, Harbin Institute of Technology, China, 2019 (in Chinese).
程汉斌. 硫酸盐侵蚀混凝土劣化规律与单轴受压本构关系研究. 硕士学位论文, 哈尔滨工业大学, 2019.
17 Li J P, Xie F, Zhao G W, et al. Construction and Building Materials, 2020, 249, 118789.
18 Min H G, Sui L L, Xing F, et al. Construction and Building Materials, 2019, 216, 365.
19 Chen Z, Yi C F, Bindihanavife V. Construction and Building Materials, 2018, 187, 791.
20 Zhuang Y, Liu X R, Zhou X H, et al. Structural Concrete, 2022, 23(6), 3786.
21 Liu X R, Chen H, Zhuang Y, et al. Industrial Construction, 2024, 54(9), 177 (in Chinese).
刘新荣, 陈海, 庄炀, 等. 工业建筑, 2024, 54(9), 177.
22 Jiang L. Study on deterioration of concrete under sulfate attack. Ph. D. Thesis, Xi’an University of Architecture & Technology, China, 2014 (in Chinese).
姜磊. 硫酸盐侵蚀环境下混凝土劣化规律研究. 博士学位论文, 西安建筑科技大学, 2014.
23 Gao R D. Micro-macro degradation regularity of sulfate attack on concrete under complex environments. Ph. D. Thesis, Tsinghua University, China, 2010 (in Chinese).
高润东. 复杂环境下混凝土硫酸盐侵蚀微—宏观劣化规律研究. 博士学位论文, 清华大学, 2010.
24 Yan R. Experimental research on sulfate attack resistance of hybrid polypropylene fiber reinforced concrete with different sizes. Master’s Thesis, Chongqing University, China, 2021 (in Chinese).
严如. 不同尺度聚丙烯纤维混凝土抗硫酸盐侵蚀试验研究. 硕士学位论文, 重庆大学, 2021.
25 Huang B. Study on the technical measures against sulfate erosion of railway tunnel lining concrete. Master’s Thesis, Central South University, China, 2010 (in Chinese).
黄波. 铁路隧道衬砌混凝土抗硫酸盐侵蚀的技术措施研究. 硕士学位论文, 中南大学, 2010.
26 Ma Q L. Mechanism and evaluation method of salt crystallization attack on concrete. Ph. D. Thesis, Central South University, China, 2009 (in Chinese).
马昆林. 混凝土盐结晶侵蚀机理与评价方法. 博士学位论文, 中南大学, 2009.
27 Liao K X, Zhang Y P, Zhang W P, et al. Construction and Building Materials, 2020, 260, 119902.
28 Sun C. Diffusion model of sulfate ions in concrete based on evolution of erosion-induced damage. Master’s Thesis, Ningbo University, China, 2012 (in Chinese).
孙超. 基于侵蚀损伤演化的混凝土中硫酸根离子扩散模型. 硕士学位论文, 宁波大学, 2012.
29 Lei M F, Peng L M, Shi C H, et al. Tunnelling and Underground Space Technology, 1996, 11(3), 305.
[1] 王家滨, 许云喆, 张凯峰, 王斌. 硝酸侵蚀/碳化交替作用下衬砌喷射混凝土的中性化研究及预测模型[J]. 材料导报, 2020, 34(8): 8058-8063.
[1] JIN Qinglin, WANG Yang, CAO Lei, SONG Qunling. Effect of Nitriding in Mushy Zone on the Nitrogen Content and Solidification Transformation of Cr10Mn9Ni0.7 Alloy[J]. Materials Reports, 2018, 32(4): 579 -583 .
[2] WANG Shengmin, ZHAO Xiaojun, HE Mingyi. Research Status and Development of Mechanical Plating[J]. Materials Reports, 2017, 31(5): 117 -122 .
[3] HE Yuandong, SUN Changzhen, MAO Weiguo, MAO Yiqi, ZHANG Honglong, CHEN Yanfei, PEI Yongmao, FANG Daining. Measurement of Transverse Piezoelectric Coefficients of Pb(Zr0.52Ti0.48)O3 Thin Films by a Mechano-electrical Multiphysics Coupling, Bulge Test Method[J]. Materials Reports, 2017, 31(15): 139 -144 .
[4] TAO Lei, ZHENG Yunwu,DI Mingwei, ZHANG Yanhua, ZHENG Zhifeng. Preparation of Porous Carbon Nanofiber from Liquid Phenolic Resin and Its Characterization[J]. Materials Reports, 2017, 31(10): 101 -106 .
[5] SU Lan, ZHANG Chubo, WANG Zhen, MI Zhenli. Finite Element Simulation of Electromagnetic Induction Heating in Hot Metal Gas Forming[J]. Materials Reports, 2017, 31(24): 182 -177 .
[6] QI Yaping, LUO Faliang, WANG Kezhi, SHEN Zhiyuan, WU Xuejian, WANG Diran. Effect of TMC-300 on the Performance of PLLA/PPC Alloy[J]. Materials Reports, 2018, 32(10): 1672 -1677 .
[7] LIU Huan, HUA Zhongsheng, HE Jiwen, TANG Zetao, ZHANG Weiwei, LYU Huihong. Indium Recovery from Waste Indium Tin Oxide: a Technological Review[J]. Materials Reports, 2018, 32(11): 1916 -1923 .
[8] DU Min, SONG Dian, XIE Ling, ZHOU Yuxiang, LI Desheng, ZHU Jixin. Electrospinning in Rechargeable Ion Batteries for High Efficient Energy Storage[J]. Materials Reports, 2018, 32(19): 3281 -3294 .
[9] LIU Xiao, XU Qian, LAI Guanghong, GUAN Jianan, XIA Chunlei, WANG Ziming, CUI Suping. Application Performances and Mechanism of Polycarboxylic Acid in Different Comb-bonded Structures in High-performance Concrete[J]. Materials Reports, 2018, 32(22): 4011 -4015 .
[10] ZHANG Di, YANG Di, XU Cui, ZHOU Riyu, LI Hao, LI Jing, WANG Peng. Study on Mechanism of Highly Effective Adsorption of Bisphenol F by Reduced Graphene Oxide[J]. Materials Reports, 2019, 33(6): 954 -959 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed