Please wait a minute...
材料导报  2025, Vol. 39 Issue (12): 24060200-5    https://doi.org/10.11896/cldb.24060200
  高分子与聚合物基复合材料 |
氨酚铁配合物催化环氧环己烷与环酸酐共聚研究
杨安冉1, 段文升1, 武宪民1, 丁慧宁1,2, 温叶倩1,*, 刘国栋1,*, 刘宾元1
1 河北工业大学化工学院,天津 300401
2 石家庄学院化工学院,石家庄 050035
Copolymerization of Cyclohexene Oxide with Cyclic Anhydride Catalyzed by Iron Aminotriphenolate Complexes
YANG Anran1, DUAN Wensheng1, WU Xianmin1, DING Huining1,2, WEN Yeqian1,*, LIU Guodong1,*, LIU Binyuan1
1 School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300401, China
2 College of Chemical Engineering, Shijiazhuang University, Shijiazhuang 050035, China
下载:  全 文 ( PDF ) ( 7171KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 环氧化物和环酸酐的开环共聚(ROCOP)是合成具有创新结构和功能聚酯的一种有效的方法。在二元催化体系双三苯基膦氯化铵(PPNCl)/氨酚铁配合物(APFe)介导下,通过调控两者的比例,实现了邻苯二甲酸酐(PA)、5-降冰片烯-exo-2,3-二甲酸酐(exo-NA)和环氧环己烷(CHO)的开环共聚,利用核磁氢谱(1H NMR)和凝胶渗透色谱(GPC)对反应进行追踪,发现反应机理会从阳离子聚合过渡到配位阴离子聚合,反应活性呈现先降低后增强的“V”字型变化,由于不同酸酐与金属配合物配位能力以及插入增长链能力存在差距,因此反应拐点会产生差异。利用不同亲核性的助催化剂四丁基氯化铵(TBACl)和APFe组成的二元体系催化9,10-二氢蒽-9,10-α,β-丁二酸酐(HASA)和CHO开环共聚,同样观察到反应活性转变的特性,利用紫外-可见(UV-Vis)光谱对配合物结构进行表征,证实了助催化剂的亲核性会对反应机理的转变产生影响。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杨安冉
段文升
武宪民
丁慧宁
温叶倩
刘国栋
刘宾元
关键词:  聚酯  开环共聚反应  氨酚铁配合物  环氧化合物  环酸酐    
Abstract: Ring-opening copolymerization (ROCOP) of epoxides and cyclic anhydrides is a powerful approach to synthesize polyesters with innovative structures and properties. In this work, the ROCOP of phthalic anhydride (PA), exo-norbornene anhydride (exo-NA) and cyclohexene oxide (CHO) has been achieved by modulating the ratio of the two under the mediation of the binary catalytic system bis(triphenylphosphine)iminium chloride (PPNCl)/iron aminotriphenolate complexes (APFe). The reaction was followed by nuclear magnetic resonance spectroscopy (1H NMR) and gel permeation chromatography (GPC), it was found that the reaction mechanism would change from cationic polymerization to coordination anionic polymerization, and the reaction activity would show a “V” pattern of decreasing and then increasing. The inflection point of the reaction would vary due to the different ability of the different anhydrides to coordinate with the metal complexes and insert into the growing chain. The ring-opening copolymerization of 9, 10-dihydroanthracene-9, 10-α, β-succinic anhydride (HASA) and CHO was catalyzed using a binary system composed of different types of cocatalyst tetrabutylammonium chloride (TBACl) and APFe. A shift in the reactivity was also observed. Structural characterization of the complexes using ultraviolet-visible (UV-Vis) spectroscopy confirms that the nucleophilicity of the cocatalyst affects the shift in the reaction mechanism.
Key words:  polyester    ring-opening copolymerization    iron aminotriphenolate complexes    epoxide    cyclic anhydride
出版日期:  2025-06-25      发布日期:  2025-06-19
ZTFLH:  TQ31  
基金资助: 河北省自然科学基金(E2022202015)
通讯作者:  *温叶倩,河北工业大学化工学院副教授、硕士研究生导师。目前主要从事不对称催化合成、高分子材料合成、无机材料合成等方面的研究。wenyq@hebut.edu.cn
刘国栋,博士,河北工业大学化工学院教授、硕士研究生导师。目前主要从事聚合物共聚共混改性、玻璃化转变、松弛动力学等方面的研究。liugd@hebut.edu.cn   
作者简介:  杨安冉,河北工业大学化工学院硕士研究生,在刘宾元教授的指导下进行研究。目前主要研究领域为均相催化剂用于碳一单体与环氧化物共聚,合成生态友好高分子材料。
引用本文:    
杨安冉, 段文升, 武宪民, 丁慧宁, 温叶倩, 刘国栋, 刘宾元. 氨酚铁配合物催化环氧环己烷与环酸酐共聚研究[J]. 材料导报, 2025, 39(12): 24060200-5.
YANG Anran, DUAN Wensheng, WU Xianmin, DING Huining, WEN Yeqian, LIU Guodong, LIU Binyuan. Copolymerization of Cyclohexene Oxide with Cyclic Anhydride Catalyzed by Iron Aminotriphenolate Complexes. Materials Reports, 2025, 39(12): 24060200-5.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24060200  或          https://www.mater-rep.com/CN/Y2025/V39/I12/24060200
1 Xie R, Yang G W, Zhang Y Y, et al. Polymer Chemistry, 2024, 15(5), 412.
2 Wu X, Yan G, Ding H, et al. Macromolecules, 2023, 56(19), 7771.
3 Abel B A, Lidston C a L, Coates G W. Journal of the American Chemical Society, 2019, 141(32), 12760.
4 Yu X P, Jia J T, Xu S, et al. Nature Communications, 2018, 9(1), 2880.
5 Ji H Y, Chen X L, Wang B, et al. Green Chemistry, 2018, 20(17), 3963.
6 Sanford M J, Peña C L, Van Zee N J, et al. Macromolecules, 2016, 49(17), 6394.
7 Han B, Zhang L, Yang M, et al. Macromolecules, 2016, 49(17), 6232.
8 Hosseini N E, Paoniasari A, Koning C E, et al. Polymer Chemistry, 2012, 3(5), 1308.
9 Wang J, Yang C, Wan Z, et al. Chinese Polymer Bulletin, 2018(12), 32 (in Chinese).
王景昌, 杨昌盛, 万泽韬, 等. 高分子通报, 2018(12), 32.
10 He G H, Liu Y L, Liu Y, et al. Macromolecules, 2022, 55(10), 3869.
11 Lidston C a L, Severson S M, Abel B A, et al. ACS Catalysis, 2022, 12(18), 11037.
12 Zhang Y Y, Yang G W, Lu C, et al. Chemical Society Reviews, 2024, 53(7), 3384.
13 Ma Y, Liu S, Li Z. Acat Polymerica Sinica, 2022, 53(9), 1041 (in Chinese).
马钰琨, 刘绍峰, 李志波. 高分子学报, 2022, 53(9), 1041.
14 Lu X B, Ren B H. Chinese Journal of Polymer Science, 2022, 40(11), 1331.
15 Plajer A J, Williams C K. Angewandte Chemie International Edition, 2021, 61(1), e202104495.
16 Hu L, Zhang X. Journal of Functional Polymers, 2019, 32(3), 259 (in Chinese).
胡岚方, 张兴宏. 功能高分子学报, 2019, 32(3), 259.
17 Longo J M, Sanford M J, Coates G W. Chemical Reviews, 2016, 116(24), 15167.
18 Aida T, Sanuki K, Inoue S. Macromolecules, 1985, 18(6), 1049.
19 Aida T, Inoue S. Journal of the American Chemical Society, 1985, 107(5), 1358.
20 Huijser S, Hosseininejad E, Sablong R, et al. Macromolecules, 2011, 44(5), 1132.
21 Diciccio A M, Coates G W. Journal of the American Chemical Society, 2011, 133(28), 10724.
22 Peña C L, Martín C, Kleij A W. Macromolecules, 2017, 50(14), 5337.
23 Monica F D, Kleij A W. ACS Sustainable Chemistry & Engineering, 2021, 9(7), 2619.
24 Yang L, Liu S, Fan P, et al. Polymer Chemistry, 2024, 15(24), 2482.
25 Brandolese A, Lamparelli D H, Grimaldi I, et al. Macromolecules, 2024, 57(8), 3816.
26 Ji H Y, Wang B, Pan L, et al. Green Chemistry, 2018, 20(3), 641.
27 Isnard F, Lamberti M, Pellecchia C, et al. ChemCatChem, 2017, 9(15), 2972.
28 Fieser M E, Sanford M J, Mitchell L A, et al. Journal of the American Chemical Society, 2017, 139(42), 15222.
29 Hosseini N E, Van Melis C G W, Vermeer T J, et al. Macromolecules, 2012, 45(4), 1770.
30 Ryu H K, Bae D Y, Lim H, et al. Polymer Chemistry, 2020, 11(22), 3756.
31 Van Zee N J, Sanford M J, Coates G W. Journal of the American Chemical Society, 2016, 138(8), 2755.
32 Zhang B R, Li H, Luo H T, et al. European Polymer Journal, 2020, 134, 109820.
33 Han B, Zhang L, Liu B, et al. Macromolecules, 2015, 48(11), 3431.
34 Sanhes D, Favier I, Saffon N, et al. Tetrahedron Letters, 2008, 49(47), 6720.
35 Chandrasekaran A, Day R O, Holmes R R. Journal of the American Chemical Society, 2000, 122(6), 1066.
36 Whiteoak C J, Martin E, Belmonte M M, et al. Advanced Synthesis & Catalysis, 2012, 354(2-3), 469.
37 Obermayer D, Damm M, Kappe C O. Chemistry - A European Journal, 2013, 19(47), 15827.
38 Hu L F, Zhang C J, Wu H L, et al. Macromolecules, 2018, 51(8), 3126.
39 Taherimehr M, Al-Amsyar S M, Whiteoak C J, et al. Green Chemistry, 2013, 15(11), 3083.
40 Pescarmona P P, Taherimehr M. Catalysis Science & Technology, 2012, 2(11), 2169.
41 Lu X B, Shi L, Wang Y M, et al. Journal of the American Chemical Society, 2006, 128(5), 1664.
42 Cui M, Qian Q, He Z, et al. Chemical Science, 2016, 7(8), 5200.
43 Darensbourg D J, Mackiewicz R M, Rodgers J L, et al. Inorganic Che-mistry, 2004, 43(6), 1831.
[1] 周书澎, 刘泽平, 区庆佑, 王传林. 混杂纤维对硫铝酸盐水泥基ECC材料性能的影响[J]. 材料导报, 2025, 39(5): 23120113-7.
[2] 赵胜前, 游庆龙, 李京洲, 尹杰, 黄之懿. 改性聚酯纤维对机场水泥混凝土的增韧阻裂效果分析[J]. 材料导报, 2024, 38(13): 23030172-8.
[3] 王述红, 贡藩, 尹宏, 修占国. 聚酯纤维泡沫混凝土力学性能及孔结构研究[J]. 材料导报, 2024, 38(1): 22060231-8.
[4] 庄思杰, 龙柱, 张丹, 孙昌. 亲水性聚酯纤维对衬垫纸制备及其性能的影响[J]. 材料导报, 2022, 36(5): 20110181-6.
[5] 吴金荣, 崔善成, 李飞, 洪荣宝. 煤矸石粉/聚酯纤维沥青混合料低温抗裂性研究[J]. 材料导报, 2021, 35(6): 6078-6085.
[6] 姜英勇, 任亮, 任重, 李文博, 帅嘉欣, 张明耀, 张会轩. 生物可降解PBS聚酯合金的制备与性能调控[J]. 材料导报, 2021, 35(22): 22151-22159.
[7] 李廷廷, 刘锦春. 硬段含量对聚酯型温敏聚氨酯弹性体性能的影响[J]. 材料导报, 2021, 35(2): 2161-2165.
[8] 曹明艳, 俞爱斌, 吴玉萍, 乔磊, 程杰. 氧化石墨烯/聚酯树脂涂层的制备及耐腐蚀性能[J]. 材料导报, 2021, 35(10): 10227-10231.
[9] 薛丽媛, 黄锋林. 纺织品微纤维的研究现状与防治措施[J]. 材料导报, 2020, 34(Z2): 567-571.
[10] 戴红, 刘跃军, 崔玲娜, 李秋艾. PBSu/PBAu嵌段聚酯酰脲共聚物的合成及流变性能[J]. 材料导报, 2019, 33(2): 347-351.
[11] 胡德超,贾志欣,钟邦超,董焕焕,丁勇,罗远芳,贾德民. 废印刷电路板非金属粉负载二氧化硅杂化填料的制备及其在不饱和聚酯中的应用[J]. 《材料导报》期刊社, 2018, 32(2): 278-281.
[12] 郭妍婷, 黄雪, 尹垚骐, 陈曼, 冯光炷. 蒙脱土增强二聚酸改性不饱和聚酯树脂的制备及性能[J]. 材料导报, 2018, 32(18): 3249-3254.
[1] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[2] LIU Shuaiyang, WANG Aiqin, LYU Shijing, TIAN Hanwei. Interfacial Properties and Further Processing of Cu/Al Laminated Composite: a Review[J]. Materials Reports, 2018, 32(5): 828 -835 .
[3] . Adhesion in SBS Modified Asphalt Containing Warm Mix Additive and
Aggregate System Based on Surface Free Theory
[J]. Materials Reports, 2017, 31(4): 115 -120 .
[4] CAO Xiuzhong, ZHAO Bing, HAN Xiuquan, HOU Hongliang, QU Haitao. Research on Deformation Mechanism of SiC Fiber Reinforced Titanium Matrix Composites Subjected to High Temperature Axial Tension[J]. Materials Reports, 2017, 31(8): 88 -93 .
[5] ZHANG Jiaqing, ZHANG Bosi, WANG Liufang, FAN Minghao, XIE Hui, LI Wei. The State of the Art of Combustion Behavior of Live Wires and Cables[J]. Materials Reports, 2017, 31(15): 1 -9 .
[6] LI Xueyun, WANG Hezhong. Optimization and Characterization of TEMPO-Mediated Oxidization of Nanochitin Whiskers[J]. Materials Reports, 2018, 32(10): 1597 -1601 .
[7] LI Beigang, WANG Min. High Efficient Adsorption of Dyes by Fe/CTS/AFA Composite[J]. Materials Reports, 2018, 32(10): 1606 -1611 .
[8] ZHAO Qingchen, WANG Jinlong, ZHANG Yuanliang, SHEN Yihong, LIU Shujie. Fatigue Behavior and Fatigue Life for FV520B-I at Different Loading Frequencies[J]. Materials Reports, 2018, 32(16): 2837 -2841 .
[9] ZHOU Chao, WANG Hui, OUYANG Liuzhang, ZHU Min. The State of the Art of Hydrogen Storage Materials for High-pressure Hybrid Hydrogen Vessel[J]. Materials Reports, 2019, 33(1): 117 -126 .
[10] WANG Huifen, LIU Gang, CAO Kangli, YANG Biqi, XU Jun, LAN Shaofei, ZHANG Lixin. Development Status of Carbon Nanotube Materials and Their Application Prospects in Spacecraft[J]. Materials Reports, 2019, 33(z1): 78 -83 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed