Copolymerization of Cyclohexene Oxide with Cyclic Anhydride Catalyzed by Iron Aminotriphenolate Complexes
YANG Anran1, DUAN Wensheng1, WU Xianmin1, DING Huining1,2, WEN Yeqian1,*, LIU Guodong1,*, LIU Binyuan1
1 School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300401, China 2 College of Chemical Engineering, Shijiazhuang University, Shijiazhuang 050035, China
Abstract: Ring-opening copolymerization (ROCOP) of epoxides and cyclic anhydrides is a powerful approach to synthesize polyesters with innovative structures and properties. In this work, the ROCOP of phthalic anhydride (PA), exo-norbornene anhydride (exo-NA) and cyclohexene oxide (CHO) has been achieved by modulating the ratio of the two under the mediation of the binary catalytic system bis(triphenylphosphine)iminium chloride (PPNCl)/iron aminotriphenolate complexes (APFe). The reaction was followed by nuclear magnetic resonance spectroscopy (1H NMR) and gel permeation chromatography (GPC), it was found that the reaction mechanism would change from cationic polymerization to coordination anionic polymerization, and the reaction activity would show a “V” pattern of decreasing and then increasing. The inflection point of the reaction would vary due to the different ability of the different anhydrides to coordinate with the metal complexes and insert into the growing chain. The ring-opening copolymerization of 9, 10-dihydroanthracene-9, 10-α, β-succinic anhydride (HASA) and CHO was catalyzed using a binary system composed of different types of cocatalyst tetrabutylammonium chloride (TBACl) and APFe. A shift in the reactivity was also observed. Structural characterization of the complexes using ultraviolet-visible (UV-Vis) spectroscopy confirms that the nucleophilicity of the cocatalyst affects the shift in the reaction mechanism.
1 Xie R, Yang G W, Zhang Y Y, et al. Polymer Chemistry, 2024, 15(5), 412. 2 Wu X, Yan G, Ding H, et al. Macromolecules, 2023, 56(19), 7771. 3 Abel B A, Lidston C a L, Coates G W. Journal of the American Chemical Society, 2019, 141(32), 12760. 4 Yu X P, Jia J T, Xu S, et al. Nature Communications, 2018, 9(1), 2880. 5 Ji H Y, Chen X L, Wang B, et al. Green Chemistry, 2018, 20(17), 3963. 6 Sanford M J, Peña C L, Van Zee N J, et al. Macromolecules, 2016, 49(17), 6394. 7 Han B, Zhang L, Yang M, et al. Macromolecules, 2016, 49(17), 6232. 8 Hosseini N E, Paoniasari A, Koning C E, et al. Polymer Chemistry, 2012, 3(5), 1308. 9 Wang J, Yang C, Wan Z, et al. Chinese Polymer Bulletin, 2018(12), 32 (in Chinese). 王景昌, 杨昌盛, 万泽韬, 等. 高分子通报, 2018(12), 32. 10 He G H, Liu Y L, Liu Y, et al. Macromolecules, 2022, 55(10), 3869. 11 Lidston C a L, Severson S M, Abel B A, et al. ACS Catalysis, 2022, 12(18), 11037. 12 Zhang Y Y, Yang G W, Lu C, et al. Chemical Society Reviews, 2024, 53(7), 3384. 13 Ma Y, Liu S, Li Z. Acat Polymerica Sinica, 2022, 53(9), 1041 (in Chinese). 马钰琨, 刘绍峰, 李志波. 高分子学报, 2022, 53(9), 1041. 14 Lu X B, Ren B H. Chinese Journal of Polymer Science, 2022, 40(11), 1331. 15 Plajer A J, Williams C K. Angewandte Chemie International Edition, 2021, 61(1), e202104495. 16 Hu L, Zhang X. Journal of Functional Polymers, 2019, 32(3), 259 (in Chinese). 胡岚方, 张兴宏. 功能高分子学报, 2019, 32(3), 259. 17 Longo J M, Sanford M J, Coates G W. Chemical Reviews, 2016, 116(24), 15167. 18 Aida T, Sanuki K, Inoue S. Macromolecules, 1985, 18(6), 1049. 19 Aida T, Inoue S. Journal of the American Chemical Society, 1985, 107(5), 1358. 20 Huijser S, Hosseininejad E, Sablong R, et al. Macromolecules, 2011, 44(5), 1132. 21 Diciccio A M, Coates G W. Journal of the American Chemical Society, 2011, 133(28), 10724. 22 Peña C L, Martín C, Kleij A W. Macromolecules, 2017, 50(14), 5337. 23 Monica F D, Kleij A W. ACS Sustainable Chemistry & Engineering, 2021, 9(7), 2619. 24 Yang L, Liu S, Fan P, et al. Polymer Chemistry, 2024, 15(24), 2482. 25 Brandolese A, Lamparelli D H, Grimaldi I, et al. Macromolecules, 2024, 57(8), 3816. 26 Ji H Y, Wang B, Pan L, et al. Green Chemistry, 2018, 20(3), 641. 27 Isnard F, Lamberti M, Pellecchia C, et al. ChemCatChem, 2017, 9(15), 2972. 28 Fieser M E, Sanford M J, Mitchell L A, et al. Journal of the American Chemical Society, 2017, 139(42), 15222. 29 Hosseini N E, Van Melis C G W, Vermeer T J, et al. Macromolecules, 2012, 45(4), 1770. 30 Ryu H K, Bae D Y, Lim H, et al. Polymer Chemistry, 2020, 11(22), 3756. 31 Van Zee N J, Sanford M J, Coates G W. Journal of the American Chemical Society, 2016, 138(8), 2755. 32 Zhang B R, Li H, Luo H T, et al. European Polymer Journal, 2020, 134, 109820. 33 Han B, Zhang L, Liu B, et al. Macromolecules, 2015, 48(11), 3431. 34 Sanhes D, Favier I, Saffon N, et al. Tetrahedron Letters, 2008, 49(47), 6720. 35 Chandrasekaran A, Day R O, Holmes R R. Journal of the American Chemical Society, 2000, 122(6), 1066. 36 Whiteoak C J, Martin E, Belmonte M M, et al. Advanced Synthesis & Catalysis, 2012, 354(2-3), 469. 37 Obermayer D, Damm M, Kappe C O. Chemistry - A European Journal, 2013, 19(47), 15827. 38 Hu L F, Zhang C J, Wu H L, et al. Macromolecules, 2018, 51(8), 3126. 39 Taherimehr M, Al-Amsyar S M, Whiteoak C J, et al. Green Chemistry, 2013, 15(11), 3083. 40 Pescarmona P P, Taherimehr M. Catalysis Science & Technology, 2012, 2(11), 2169. 41 Lu X B, Shi L, Wang Y M, et al. Journal of the American Chemical Society, 2006, 128(5), 1664. 42 Cui M, Qian Q, He Z, et al. Chemical Science, 2016, 7(8), 5200. 43 Darensbourg D J, Mackiewicz R M, Rodgers J L, et al. Inorganic Che-mistry, 2004, 43(6), 1831.