Please wait a minute...
材料导报  2025, Vol. 39 Issue (10): 24040188-6    https://doi.org/10.11896/cldb.24040188
  无机非金属及其复合材料 |
不同制备条件下ZnO:X%Eu的光电特性研究
梁平1, 夏梓文1, 冯扬1, 杨伟业1,2, 彭鸿雁1,2, 赵世华1,2,3,*
1 海南师范大学物理与电子工程学院,海口 571158
2 海南省院士创新平台,海口 571158
3 商丘师范学院物理系,河南 商丘 476000
Photoelectric Characterization of ZnO:X%Eu Under Different Preparation Conditions
LIANG Ping1, XIA Ziwen1, FENG Yang1, YANG Weiye1,2, PENG Hongyan1,2, ZHAO Shihua1,2,3,*
1 College of Physics and Electronic Engineering, Hainan Normal University, Haikou 571158, China
2 The Innovation Platform for Academicians of Hainan Province, Haikou 571158, China
3 Physics Department, Shangqiu Normal University, Shangqiu 476000, Henan, China
下载:  全 文 ( PDF ) ( 8897KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用水热法在不同制备条件下合成了稀土铕(Eu)掺杂的氧化锌(ZnO)样品,并利用 XRD、SEM、EDS、Raman、XPS、PL和I-V对样品的结构、形貌和性能进行了表征和分析。结果表明:掺杂5%铕的样品结晶度良好,不同退火温度(600、800、1 000 ℃)下粉末晶粒形状均成松子状,铕离子与锌离子实际比值与理论值接近一致。Raman、XPS谱显示稀土Eu离子以三价态掺入ZnO晶格,并致使 ZnO内部原子光学声子振动模的变化。PL谱显示样品在618 nm处荧光发射最强,最佳掺杂摩尔浓度为5%。I-V曲线显示,未掺杂的氧化锌粉末和ZnO:9%Eu粉末在-5~5 V的范围内的电阻率分别约为3.8×1010 Ω·cm和1.11×109 Ω·cm。ZnO:1%Eu和ZnO:5%Eu粉末的电阻率则随着电压区间发生变化:在-5~0 V的范围内,电导呈现近似线性关系,电阻率分别约为1.41×108、1.21×108 Ω·cm;在0~5 V范围内,电导则为零。以上实验结果反映了样品在掺杂不同浓度的铕时电导机制的变化规律,为材料在光电器件中的应用提供了参考价值。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
梁平
夏梓文
冯扬
杨伟业
彭鸿雁
赵世华
关键词:  水热法  ZnO:Eu3+  荧光发光  I-V特性    
Abstract: Synthesis of europium (Eu) doped zinc oxide (ZnO) samples was achieved using a hydrothermal method under various preparation conditions. The structural, morphological, and performance characteristics of the samples were characterized and analyzed using XRD, SEM, EDS, Raman, XPS, PL, and I-V techniques. The results indicate that the crystallinity of the 5% europium-doped sample is good, and the powder grains exhibit pinecone-like shapes at different annealing temperatures (600, 800, 1 000 ℃). The actual ratio of europium ions to zinc ions is close to the theoretical value. Raman and XPS spectra show that trivalent europium ions are incorporated into the ZnO lattice, leading to changes in the atomic optical phonon vibration modes of ZnO. The PL spectrum reveals the strongest fluorescence emission at 618 nm, with the optimal doping molar concentration being 5%. The I-V curve demonstrates that the resistivity of undoped zinc oxide powder and ZnO:9%Eu powder in the range of -5 to 5 V is approximately 3.8×1010 Ω·cm and 1.11×109 Ω·cm, respectively. While the resistivity of ZnO:1%Eu and ZnO:5%Eu powders varies within different voltage ranges:in the range of -5 to 0 V, the conductivity shows an approximately linear relationship, with resistivity values of about 1.41×108 and 1.21×108 Ω·cm, respectively; in the range of 0 to 5 V, the conductivity drops to zero. These experimental results reflect the variations in the conductivity mechanism of samples doped with different concentrations of europium, providing valuable insights for the application of materials in optoelectronic devices.
Key words:  hydrothermal method    ZnO:Eu3+    fluorescence luminescence    I-V characteristics
出版日期:  2025-05-25      发布日期:  2025-05-13
ZTFLH:  O469  
基金资助: 国家自然科学基金(U1704145);海南省自然科学基金(522MS062);海南省院士创新平台科研项目(YSPTZX202207)
通讯作者:  *赵世华,海南师范大学物理与电子工程学院教授、硕士研究生导师。目前主要从事纳米阵列材料的制备及其发光性能研究,探究一维纳米线阵列的超大尺寸、高密度可控生长。zsh@hainnu.edu.cn   
作者简介:  梁平,现为海南师范大学物理与电子工程学院硕士研究生,在赵世华教授的指导下进行研究。目前主要从事采用水热反应釜的合成方法制备ZnO及其掺杂纳米材料,并对其光电性能进行检测与研究。
引用本文:    
梁平, 夏梓文, 冯扬, 杨伟业, 彭鸿雁, 赵世华. 不同制备条件下ZnO:X%Eu的光电特性研究[J]. 材料导报, 2025, 39(10): 24040188-6.
LIANG Ping, XIA Ziwen, FENG Yang, YANG Weiye, PENG Hongyan, ZHAO Shihua. Photoelectric Characterization of ZnO:X%Eu Under Different Preparation Conditions. Materials Reports, 2025, 39(10): 24040188-6.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24040188  或          https://www.mater-rep.com/CN/Y2025/V39/I10/24040188
1 Niu Q, Xue R, Su J, et al. Materials Sciences and Applications, 2022, 13(12), 587.
2 Yang Lei, Zhou Lifang, Hong Chunshui, et al. Journal of Chemical Physics, 2023, 159, 214703.
3 Karimi M, Sadeghi E, Bigdeli S K, et al. Radiation Physics and Chemistry, 2023, 212, 111132.
4 Amrita Palai, Nihar Ranjan Panda, Dojalisa Sahu. ECS Journal of Solid State Science and Technology, 2023, 12, 076015.
5 Hye Ji Jang, Ju Hyun Yang, Ju Young Maeng, et al. Journal of CO2 Utilization, 2022, 60, 101994.
6 Xu Z, Islam M M, Meitzner R, et al. ACS Applied Materials & Interfaces, 2023, 15, 45146.
7 Temahuki N, Jomard F, Lusson A, et al. Applied Physics Letters, 2021, 118, 102106.
8 Malimabe M A, Dejene B F, Swart H C, et al. Journal Pre-proof, 2020, 1202(1), 127339.
9 Zhang Linli, Ling Yawen, Zhang Ling, et al. Rare Metal Materials And Engineering, 2008, 37(2), 370(in Chinese).
张琳丽, 凌亚文, 张玲, 等. 稀有金属材料与工程, 2008, 37(2), 370.
10 Xin Xianshuang, Zhou Baibin, Lyu Shuchen et al. Acta Physica Sinica, 2005, 54(4), 1859(in Chinese).
辛显双, 周百斌, 吕树臣, 等. 物理学报, 2005, 54(4), 1859.
11 Singh L R. Materials Sciences & Applications, 2015, 6(4), 269.
12 Wang H P. Applied Mechanics & Materials, 2014, 352, 496.
13 Huang Kaijin, Yan Li, Xie Changsheng. Materials Reports, 2010, 24(11), 7(in Chinese).
黄开金, 闫里, 谢长生. 材料导报, 2010, 24(11), 7.
14 Letswalo M L A, Reddy L, Balakrishna A, et al. Materials Today Communications, 2024, 38, 107944.
15 Zhao S R, Liu Z X, Liu J K, et al. Industrial and Engineering Chemistry Research, 2023, 62(2), 1035.
16 Zhao Xu, Jiang Da, Liang Chen, et al. Materials Reports, 2015, 29(25), 17(in Chinese).
赵旭, 姜妲, 梁晨, 等. 材料导报, 2015, 29(25), 17.
17 Xu Ming, Hu Zhigang, Wu Yannan, et al. Materials Reports, 2010, 24(19), 27(in Chinese).
徐明, 胡志刚, 吴艳南, 等. 材料导报, 2010, 24(19), 27.
18 Bian Mingjing, Zhang Hongyan, Zhang Jun, et al. Optik-International Journal for Light and Electron Optics, 2020, 209, 164607.
19 Lyu Baohua, Li Yuzhen, Yao Chenzhong. Chemical Research and Application, 2018, 30(9), 1516(in Chinese).
吕宝华, 李玉珍, 姚陈忠. 化学研究与应用, 2018, 30(9), 1516.
20 Mohamed W S, Abu-Dief A M. The journal of Physics and Chemistry of Solids, 2018, 116, 375.
21 Lang Jihui, Wang Jiaying, Zhang Qi, et al. Materials Science in Semiconductor Processing, 2016, 41, 32.
22 Karimi M, Sadeghi E, Khosravi Bigdeli S, et al. Radiation Physics and Chemistry, 2023, 212, 111132.
23 Marius Millot, Ramon Tena-Zaera, Vicente Munoz-Sanjose, et al. Applied Physics Letters, 2010, 96, 152103.
24 Karpyna V, Ievtushenko A, Kolomys O, et al. Physica Status Solidi (B), 2020, 257(6), 67.
25 Zhang Yongzhe, Liu Yanping, Wu Lihui, et al. Journal of Physics D-Applied Physics, 2009, 42, 085106.
26 She Yajuan. Synthesis and optical characteristic studies of rare-earth doped ZnO nanoparticles. Master’s Thesis, Hunan University, China, 2014 (in Chinese).
佘亚娟. 稀土掺杂ZnO纳米颗粒的制备及光学性能研究. 硕士学位论文, 湖南大学, 2013.
27 Wang Qing’e. Study on doping characteristics of nanostructured ZnO. Master’s Thesis, Yantai University, China, 2018(in Chinese).
王庆娥. 纳米结构氧化锌的掺杂特性研究. 硕士学位论文, 烟台大学, 2018.
28 Sutar D S, Kushwaha N, Appani S K, et al. Journal of Electron Spectroscopy and Related Phenomena, 2020, 243(1), 18.
29 Qi Kezhen, Xing Xiaohan, Amir Zada, et al. Ceramics International, 2019, 46, 1494.
30 Zhou Xiaoguang. Journal of Jilin Normal University (Natural Science Edition), 2012(3), 50(in Chinese).
周晓光. 吉林师范大学学报 (自然科学版), 2012(3), 50.
31 Sun Xiaoqi, Meng Qinghua, Meng Qingyun. Chinese Journal of Luminescence, 2013, 34(5), 573.
孙晓绮, 孟庆华, 孟庆云. 发光学报, 2013, 34(5), 573.
32 Nataliya Babayevska, Igor Iatsunskyi, Patryk Florczak, et al. Ecological restoration, 2020, 38(1), 31.
33 Du Dan, Li Jin, Ai Fengwei, et al. Applied Chemical Industry, 2016, 45(10), 1856(in Chinese).
杜丹, 李瑾, 艾凤伟, 等. 应用化工, 2016, 45(10), 1856.
34 Yuan Guimei, Zhou Ruipeng, Feng Xinyi, et al. Applied Chemical Industry, 2021, 50(5), 1159.
袁桂梅, 周睿鹏, 封心怡, 等. 应用化工, 2021, 50(5), 1159.
35 Guo Deshuang, Chen Zinan, Wang Dengkui, et al. Chinese Journal of Lasers, 2016, 46 (4), 0403002-1(in Chinese).
郭德双, 陈子男, 王登魁, 等. 中国激光, 2016, 46 (4), 0403002-1.
36 Zhao Shihua, Shu Fangjie, Li Yanmin, et al. Journal of Nanoscience and Nanotechnology, 2012, 12(3), 2607.
37 Zhao Shihua, Du Xuelian, Cui Yuting, et al. Journal of Nanoscience and Nanotechnology, 2014, 14(5), 3953.
38 Li Peng, Zhang Hongyan, Li Zhijun, et al. Optoelectronics Letters, 2020, 16 (4), 11.
39 Zhao Kaiping. Journal of Xiangfan University, 2007(2), 20(in Chinese).
赵开屏. 襄樊学院学报, 2007(2), 20.
40 Li Meng, Sun Lianfeng, Qiao Lijie. Journal of Chinese Electron Microscopy Society, 2006, 25(4), 320(in Chinese).
李萌, 孙连峰, 乔利杰. 电子显微学报, 2006, 25(4), 320.
[1] 谢志翔, 彭溢源, 刘汉语, 朱嗣承, 陈婷. 离子液体辅助水热法制备BiVO4黄色色料及色度研究[J]. 材料导报, 2025, 39(7): 24010243-5.
[2] 张理元, 张菁菁, 吴娜, 沈如倩. 氟化对钛锂离子筛制备及性能的影响[J]. 材料导报, 2024, 38(18): 22090255-8.
[3] 涂盛辉, 钟荣福, 张超, 刘桉如, 吴文彬, 杜军. ZIF-8@TiO2复合材料的制备及光催化性能[J]. 材料导报, 2024, 38(16): 23030150-6.
[4] 罗宁, 高凤雨, 陈都, 张辰骁, 段二红, 赵顺征, 易红宏, 唐晓龙. CeMn复合氧化物的制备及氯苯催化氧化性能[J]. 材料导报, 2024, 38(16): 23050133-9.
[5] 裴胤昌, 莫胜鹏, 解庆林, 陈南春. 红辉沸石两步水热制备高品质X型分子筛及其高效吸附Cd2+、Ni2+性能研究[J]. 材料导报, 2023, 37(24): 22050310-9.
[6] 孙慧慧, 周子吉, 曹文, 王群, 周忠华, 黄悦. 玻璃表面梯度多孔减反射膜层的水热制备及水刻蚀剂添加Na2HPO4对膜层结构的影响[J]. 材料导报, 2023, 37(22): 22060210-7.
[7] 王南南, 李继文, 刘伟, 李武会, 张玉栋, 雷金坤, 徐流杰. 铝钼共掺杂氧化锌粉末的制备及光电性能研究[J]. 材料导报, 2022, 36(4): 20090212-7.
[8] 陈刚, 熊施权, 吕洪, 郝传璞. 电解阳极催化剂用介孔Sb、Co掺杂SnO2载体的研究[J]. 材料导报, 2022, 36(3): 20110206-6.
[9] 何盈至, 赵谦, 王世荣, 刘红丽, 张天永, 李彬, 李祥高. 双亲型二氧化钛纳米粒子的制备及高稳定非水分散性研究[J]. 材料导报, 2022, 36(20): 21060093-6.
[10] 李增鹏, 戴剑锋, 成晨, 冯伟. BiFeO3多铁材料形貌与磁光性能调控研究[J]. 材料导报, 2022, 36(11): 20120114-7.
[11] 李雅洁, 刘剑, 徐晨, 邢镔. 水热法制备固态电解质Li3xLa2/3-xTiO3粉末[J]. 材料导报, 2021, 35(z2): 8-12.
[12] 杜广智, 张骞, 廖继飞, 林玉, 伍凡, 向将来, 王晓如, 张瑞阳. 水热处理增强磷酸钴催化臭氧分解性能的研究[J]. 材料导报, 2021, 35(z2): 81-85.
[13] 王三胜, 王莹. 石墨提纯工艺研究进展综述和新技术展望[J]. 材料导报, 2020, 34(Z2): 147-151.
[14] 杨露, 郭敏, 宋志成, 刘大伟, 倪玉凤. 基于高长径比TiO2纳米线的染料敏化太阳能电池光阳极的制备[J]. 材料导报, 2020, 34(Z1): 7-12.
[15] 莫若飞. 多孔腔骰子形和六足形氧化亚铜的水热合成[J]. 材料导报, 2020, 34(Z1): 148-152.
[1] JIN Qinglin, WANG Yang, CAO Lei, SONG Qunling. Effect of Nitriding in Mushy Zone on the Nitrogen Content and Solidification Transformation of Cr10Mn9Ni0.7 Alloy[J]. Materials Reports, 2018, 32(4): 579 -583 .
[2] WANG Shengmin, ZHAO Xiaojun, HE Mingyi. Research Status and Development of Mechanical Plating[J]. Materials Reports, 2017, 31(5): 117 -122 .
[3] HE Yuandong, SUN Changzhen, MAO Weiguo, MAO Yiqi, ZHANG Honglong, CHEN Yanfei, PEI Yongmao, FANG Daining. Measurement of Transverse Piezoelectric Coefficients of Pb(Zr0.52Ti0.48)O3 Thin Films by a Mechano-electrical Multiphysics Coupling, Bulge Test Method[J]. Materials Reports, 2017, 31(15): 139 -144 .
[4] TAO Lei, ZHENG Yunwu,DI Mingwei, ZHANG Yanhua, ZHENG Zhifeng. Preparation of Porous Carbon Nanofiber from Liquid Phenolic Resin and Its Characterization[J]. Materials Reports, 2017, 31(10): 101 -106 .
[5] SU Lan, ZHANG Chubo, WANG Zhen, MI Zhenli. Finite Element Simulation of Electromagnetic Induction Heating in Hot Metal Gas Forming[J]. Materials Reports, 2017, 31(24): 182 -177 .
[6] QI Yaping, LUO Faliang, WANG Kezhi, SHEN Zhiyuan, WU Xuejian, WANG Diran. Effect of TMC-300 on the Performance of PLLA/PPC Alloy[J]. Materials Reports, 2018, 32(10): 1672 -1677 .
[7] LIU Huan, HUA Zhongsheng, HE Jiwen, TANG Zetao, ZHANG Weiwei, LYU Huihong. Indium Recovery from Waste Indium Tin Oxide: a Technological Review[J]. Materials Reports, 2018, 32(11): 1916 -1923 .
[8] DU Min, SONG Dian, XIE Ling, ZHOU Yuxiang, LI Desheng, ZHU Jixin. Electrospinning in Rechargeable Ion Batteries for High Efficient Energy Storage[J]. Materials Reports, 2018, 32(19): 3281 -3294 .
[9] LIU Xiao, XU Qian, LAI Guanghong, GUAN Jianan, XIA Chunlei, WANG Ziming, CUI Suping. Application Performances and Mechanism of Polycarboxylic Acid in Different Comb-bonded Structures in High-performance Concrete[J]. Materials Reports, 2018, 32(22): 4011 -4015 .
[10] ZHANG Di, YANG Di, XU Cui, ZHOU Riyu, LI Hao, LI Jing, WANG Peng. Study on Mechanism of Highly Effective Adsorption of Bisphenol F by Reduced Graphene Oxide[J]. Materials Reports, 2019, 33(6): 954 -959 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed