Please wait a minute...
材料导报  2024, Vol. 38 Issue (8): 22080243-12    https://doi.org/10.11896/cldb.22080243
  无机非金属及其复合材料 |
稀土上转换发光材料的设计及在光动力治疗中的应用研究进展
甘晓明1, 苏玉仙1, 应文伟2, 王建峰2, 刘力1, 周晓峰2,*, 温世鹏1,*
1 北京化工大学北京市先进弹性体工程技术研究中心,北京 100029
2 中日友好医院泌尿外科,北京 100029
Research Progress in the Design of Rare-earth Up-conversion Luminescent Materials and Their Application in Photodynamic Therapy
GAN Xiaoming1, SU Yuxian1, YING Wenwei2, WANG Jianfeng2, LIU Li1, ZHOU Xiaofeng2,*, WEN Shipeng1,*
1 Beijing Engineering Research Center of Advanced Elastomers, Beijing University of Chemical Technology, Beijing 100029, China
2 Department of Urology, China-Japan Friendship Hospital, Beijing 100029, China
下载:  全 文 ( PDF ) ( 21758KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 作为一种新兴的无创治疗方法,光动力治疗在癌症治疗方面具有副作用小、累积毒性小、有效杀伤肿瘤以及精准的靶向治疗而不损伤邻近组织等优势,是理想的癌症治疗方法之一。本文首先简要概括了光动力治疗的机理、基本要素以及细胞作用机制,讨论了稀土上转化发光材料的设计特点以及光动力治疗对上转化发光材料的要求,进一步详述了上转换发光纳米材料、光敏剂以及靶向体的材料结合方式和应用效果,最后综述了光动力治疗和放疗、化疗及光热治疗相结合的协同治疗的进展。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
甘晓明
苏玉仙
应文伟
王建峰
刘力
周晓峰
温世鹏
关键词:  光动力治疗  稀土上转换发光材料  光敏剂  癌症治疗    
Abstract: As an emerging non-invasive therapeutic approach, photodynamic therapy is an ideal cancer treatment method due to the low number of side effects, low cumulative toxicity, effective tumor destruction, and precise targeting without damaging adjacent tissues. In this review, we first briefly outline the mechanism, basic elements, and cellular reaction mechanisms of photodynamic therapy. After that, the design features of rare-earth up-conversion luminescent materials and the requirements of photodynamic therapy for up-conversion luminescent materials are discussed. In addition, the material combination methods of up-conversion luminescent nanomaterials, photosensitizers, and targeting substances, as well as the application effects, are summarized. Lastly, the progress of synergistic therapy combining photodynamic therapy with radiotherapy, che-motherapy, and photothermal therapy is reviewed.
Key words:  photodynamics therapy    rare-earth up-conversion luminescent material    photosensitizers    cancer therapy
出版日期:  2024-04-25      发布日期:  2024-04-28
ZTFLH:  TB33  
  R318.08  
通讯作者:  *周晓峰,中日友好医院泌尿外科主任,主任医师,教授,博士研究生导师。擅长泌尿系肿瘤、前列腺疾病、肾上腺疾病、肾移植,尿路结石、男性疾病等泌尿外科临床疾病的诊断及微创治疗。现任中华医学会泌尿外科分会男科学组委员、中国研究型医院学会医疗质量管理与评价专业委员会副主任委员兼秘书长、中国医师协会男科与性医学医师分会委员会常务委员、北京医师协会泌尿外科专科医师分会常务理事,北京癌症防治学会泌尿肿瘤专业委员会副主任委员。发表Microb.Biotechnol.在内的论文50余篇。doctorzxf@126.com
温世鹏,北京化工大学材料科学与工程学院研究员。2004年郑州大学材料科学与工程学院高分子材料专业本科毕业,2010年北京化工大学材料科学与工程学院材料科学与工程专业博士毕业后到北京化工大学工作至今。目前主要从事功能纳米材料及其应用方面的研究工作。发表论文100余篇,包括Chemical Engineering Journal、ACS Applied Materials & Interfaces、Composites Part B等。wensp@mail.buct.edu.cn   
作者简介:  甘晓明,2021年7月于安徽工业大学获得工学学士学位。现为北京化工大学材料科学与工程学院硕士研究生,在温世鹏研究员的指导下进行研究。目前主要研究领域为稀土上转换发光纳米材料。
引用本文:    
甘晓明, 苏玉仙, 应文伟, 王建峰, 刘力, 周晓峰, 温世鹏. 稀土上转换发光材料的设计及在光动力治疗中的应用研究进展[J]. 材料导报, 2024, 38(8): 22080243-12.
GAN Xiaoming, SU Yuxian, YING Wenwei, WANG Jianfeng, LIU Li, ZHOU Xiaofeng, WEN Shipeng. Research Progress in the Design of Rare-earth Up-conversion Luminescent Materials and Their Application in Photodynamic Therapy. Materials Reports, 2024, 38(8): 22080243-12.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.22080243  或          https://www.mater-rep.com/CN/Y2024/V38/I8/22080243
1 Siegel R, Miller K, Wagle N, et al. CA:A Cancer Journal for Clinicians, 2023, 73(1), 0007.
2 Caldwell K, San Diego C, Antonio I, et al. Journal of PeriAnesthesia Nursing, 2013, 28(3), e30.
3 Pilote L, Côté L, Chipenda D S, et al. BMC Medical Informatics and Decision Making, 2019, 19(1), 84.
4 Choi N, Shin D Y, Kim H J, et al. Journal of Surgical Research, 2018, 221, 95.
5 Daniell M D, Hill J S. ANZ Journal of Surgery, 1991, 61(5), 340.
6 Agostinis P, Berg K, Cengel K A, et al. Photodynamic Therapy of Cancer, 2011, 61(4), 250.
7 Liu Y, Tu D, Zhu H, et al. Chemical Society Reviews, 2013, 42(16), 6924.
8 Zheng W, Huang P, Tu D, et al. Chemical Society Reviews, 2015, 44(6), 1379.
9 Gargas D J, Chan E M, Ostrowski A D, et al. Nature Nanotechnology, 2014, 9(4), 300.
10 Gu Z, Yan L, Tian G, et al. Advanced Materials, 2013, 25(28), 3758.
11 Mai S, González L. Angewandte Chemie International Edition, 2020, 59(39), 16832.
12 Macdonald I J, Dougherty T J. Journal of Porphyrins and Phthalocyanines, 2001, 5(2), 105.
13 Donnelly R F, McCarron P A, Tunney M M. Microbiological Research, 2008, 163(1), 1.
14 Moan J, Wold E. Nature, 1979, 279(5712), 450.
15 Xia L, Kong X, Liu X, et al. Biomaterials, 2014, 35(13), 4146.
16 Huang Z, Xu H, Meyers A D, et al. Technology in Cancer Research & Treatment, 2008, 7(4), 309.
17 Plaetzer K, Krammer B, Berlanda J, et al. Lasers in Medical Science, 2009, 24(2), 259.
18 Yoon I, Li J Z, Shim Y K. Clinical Endoscopy, 2013, 46(1), 7.
19 Frangioni J V. Current Opinion in Chemical Biology, 2003, 7(5), 626.
20 Ochsner M. Journal of Photochemistry and Photobiology B: Biology, 1996, 32(1), 3.
21 Luan L, Ding L, Zhang W, et al. Bioorganic & Medicinal Chemistry Letters, 2013, 23(13), 3775.
22 Simões J C S, Sarpaki S, Papadimitroulas P, et al. Journal of Medicinal Chemistry, 2020, 63(23), 14119.
23 Abrahamse H, Hamblin M R. The Biochemical Journal, 2016, 473(4), 347.
24 Siboni G, Amit-Patito I, Weizman E, et al. Cancer Letters, 2003, 196(1), 57.
25 Gorin A, Gabitova L, Astsaturov I. Current Opinion in Pharmacology, 2012, 12(6), 710.
26 Dougherty T J, Gomer C J, Henderson B W, et al. Journal of the National Cancer Institute, 1998, 90(12), 889.
27 Josefsen L B, Boyle R W. British Journal of Pharmacology, 2008, 154(1), 1.
28 Simões J C S, Sarpaki S, Papadimitroulas P, et al. Journal of Medicinal Chemistry, 2020, 63(23), 14119.
29 Cheng Y, Samia A C, Meyers J D, et al. Journal of the American Chemical Society, 2008, 130(32), 10643.
30 Mai W X, Meng H. Integrative Biology, 2012, 5(1), 19.
31 Feazell R P, Nakayama-Ratchford N, Dai H, et al. Journal of the American Chemical Society, 2007, 129(27), 8438.
32 Hafeman S, London C, Elmslie R, et al. Cancer Immunology, Immunotherapy, 2010, 59(3), 441.
33 Elzoghby A O, Samy W M, Elgindy N A. Journal of Controlled Release, 2012, 157(2), 168.
34 Oleinick N L, Morris R L, Belichenko I. Photochemical & Photobiological Sciences, 2002, 1(1), 1.
35 Castano A P, Mroz P, Hamblin M R. Nature Reviews Cancer, 2006, 6(7), 535.
36 Evans S, Matthews W, Perry R, et al. Journal of the National Cancer Institute, 1990, 82(1), 34.
37 Sitnik T M, Hampton J A, Henderson B W. British Journal of Cancer, 1998, 77(9), 1386.
38 Wu M Y, Xu X, Hu R, et al. Advanced Science, 2023, 10(35), 2207736.
39 Dolmans D E J G J, Fukumura D, Jain R K. Nature Reviews Cancer, 2003, 3(5), 380.
40 Allison R R, Moghissi K. Clinical Endoscopy, 2013, 46(1), 24.
41 Mai H X, Zhang Y W, Sun L D, et al. The Journal of Physical Chemistry C, 2007, 111(37), 13721.
42 Huang P, Zheng W, Zhou S, et al. Angweandte Chemie, 2014, 53(5), 1252.
43 Wang F, Liu X. Journal of the American Chemical Society, 2008, 130(17), 5642.
44 He F, Yang P, Wang D, et al. Inorganic Chemistry, 2011, 50(9), 4116.
45 Idris N M, Gnanasammandhan M K, Zhang J, et al. Nature Medicine. 2012, 18(10), 1580.
46 Dai Y, Yang D, Ma P, et al. Biomaterials, 2012, 33(33), 8704.
47 Shan J, Ju Y. Applied Physics Letters, 2007, 91(12), 123103.
48 Loo J F C, Chien Y H, Yin F, et al. Coordination Chemistry Reviews, 2019, 400, 213042.
49 Lingeshwar R K, Balaji R, Kumar A, et al. Small, 2018, 14(37), 1801304.
50 Chen X, Sun T, Wang F. Chemistry-an Asian Journal, 2020, 15(1), 21.
51 Ren W, Lin G, Clarke C, et al. Advanced Materials, 2020, 32(18), 1901430.
52 Liu S, Huang J, Yan L, et al. Journal of Materials Chemistry A, 2021, 9(7), 4007.
53 Wen S, Liu Y, Wang F, et al. Nature Communications, 2020, 11(1), 6047.
54 Shang Y, Zhou J, Cai Y, et al. Nature Communications, 2020, 11(1), 6156.
55 Zhang F, Wan Y, Yu T, et al. Angewandte Chemie, 2007, 46(42), 7976.
56 Tian Q, Yao W, Wu W, et al. Nanoscale Horizons, 2019, 4(1), 10.
57 Zhang Q, Yang F, Xu Z, et al. Nanoscale Horizons, 2019, 4(3), 579.
58 Chan E M, Levy E S, Cohen B E. Advanced Materials, 2015, 27(38), 5753.
59 Liang L, Care A, Zhang R, et al. ACS Applied Materials & Interfaces, 2016, 8(19), 11945.
60 Lucky S S, Muhammad I N, Li Z, et al. ACS Nano, 2015, 9(1), 191.
61 Thanasekaran P, Chu C H, Wang S B, et al. ACS Applied Materials & Interfaces, 2019, 11(1), 84.
62 Cui S, Yin D, Chen Y, et al. ACS Nano, 2013, 7(1), 676.
63 Liu K, Liu X, Zeng Q, et al. ACS Nano, 2012, 6(5), 4054.
64 Wang D, Xue B, Kong X, et al. Nanoscale, 2015, 7(1), 190.
65 Yang X, Xiao Q, Niu C, et al. Journal of Materials Chemistry B, 2013, 1(21), 2757.
66 Wang C, Tao H, Cheng L, et al. Biomaterials, 2011, 32(26), 6145.
67 Liu X, Zheng M, Kong X, et al. Chemical Communications, 2013, 49(31), 3224.
68 Ai F, Ju Q, Zhang X, et al. Scientific Reports, 2015, 5(1), 10785.
69 Zhao L, Choi J, Lu Y, et al. Nanomaterials, 2020, 10(12), 2332.
70 Lim K, Kim H K, Le X T, et al. Pharmaceutics, 2020, 12(11), 1102.
71 Liu Z Y, Tang X Y, Huang C Q, et al. Inorganic Chemistry Frontiers, 2022, 9(8), 1836.
72 Wang H, Dong C, Zhao P, et al. International Journal of Pharmaceutics, 2014, 466(1), 307.
73 Liu S, Yuan Y, Yang Y, et al. Journal of Materials Chemistry B, 2017, 5(41), 8169.
74 Zhang T, Huang S, Lin H, et al. New Journal of Chemistry, 2017, 41(6), 2468.
75 Zhang T, Lin H, Cui L, et al. RSC Advances, 2016, 6(31), 26479.
76 Hou B, Zheng B, Gong X, et al. Journal of Materials Chemistry B, 2015, 3(17), 3531.
77 Zhou A, Wei Y, Wu B, et al. Molecular Pharmaceutics, 2012, 9(6), 1580.
78 Zhang X, Ai F, Sun T, et al. Inorganic Chemistry, 2016, 55(8), 3872.
79 Ai F, Wang N, Zhang X, et al. Nanoscale, 2018, 10(9), 4432.
80 Wang H J, Shrestha R, Zhang Y. Particle & Particle Systems Characte-rization, 2014, 31(2), 228.
81 Wang Y, Feng M, Lin B, et al. Nanoscale, 2021, 13(43), 18125.
82 Li Y, Zhang X, Zhang Y, et al. ACS Applied Materials & Interfaces, 2020, 12(17), 19313.
83 Panikar SS, Ramírez-García G, Banu N, et al. Journal of Luminescence, 2021, 237, 118143.
84 Hou Z, Zhang Y, Deng K, et al. ACS Nano, 2015, 9(3), 2584.
85 Hou Z, Deng K, Li C, et al. Biomaterials, 2016, 101, 32.
86 Zhang P, Steelant W, Kumar M, et al. Journal of the American Chemical Society, 2007, 129(15), 4526.
87 Lim M E, Lee Y L, Zhang Y, et al. Biomaterials, 2012, 33(6), 1912.
88 Wegh RT, Donker H, Oskam KD, et al. Journal of Luminescence, 1999, 82(2), 93.
89 Zhang Y, Lin JD, Vijayaragavan V, et al. Chemical Communications, 2012, 48(83), 10322.
90 Zhao J, Chen X, Chen B, et al. Advanced Functional Materials, 2019, 29(44), 1903295.
91 Yang J, Shen D, Li X, et al. Chemistry-a European Journal, 2012, 18(43), 13642.
92 Zhang F, Li J, Shan J, et al. Chemistry-a European Journal, 2009, 15(41), 11010.
93 Boyer J C, Cuccia L A, Capobianco J A. Nano Letters, 2007, 7(3), 847.
94 Vetrone F, Naccache R, Mahalingam V, et al. Journal of Materials Chemistry C, 2009, 19(18), 2924.
95 Fenton J L, Steimle B C, Schaak R E. Science, 2018, 360(6388), 513.
96 Liu J, Rijckaert H, Zeng M, et al. Advanced Functional Materials, 2018, 28(17), 1707365.
97 Chen D, Lei L, Yang A, et al. Chemical Communications, 2012, 48(47), 5898.
98 Chen Q, Xie X, Huang B, et al. Angewandte Chemie International Edition, 2017, 56(26), 7605.
99 Johnson N J J, He S, Diao S, et al. Journal of the American Chemical Society, 2017, 139(8), 3275.
100 Su Q, Han S, Xie X, et al. Journal of the American Chemical Society, 2012, 134(51), 20849.
101 Liu Q, Zhang Y, Peng C S, et al. Nature Photonics, 2018, 12(9), 548.
102 Qin Y, Dong Z, Zhou D, et al. Optical Materials Express, 2016, 6(6), 1942.
103 Li A H, Zheng Z R, Lü Q, et al. Journal of Applied Physics, 2009, 105(1), 013536.
104 Shen J, Chen G, Vu A M, et al. Advanced Optical Materials, 2013, 1(9), 644.
105 Wang Y F, Liu G Y, Sun L D, et al. ACS Nano, 2013, 7(8), 7200.
106 Xu J, Yang P, Sun M, et al. ACS Nano, 2017, 11(4), 4133.
107 Lin H, Chen Y, Shi J. Chemical Society Reviews, 2018, 47(6), 1938.
108 Matera C, Gomila A M J, Camarero N, et al. Journal of the American Chemical Society, 2018, 140(46), 15764.
109 Nair R K, Christie C, Ju D, et al. Lasers in Medical Science, 2018, 33(8), 1747.
110 Yang N, Guo H, Cao C, et al. Biomaterials, 2021, 275, 120918.
111 Peer D, Karp J M, Hong S, et al. Nature Nanotechnology, 2007, 2(12), 751.
112 He C, Liu D, Lin W. ACS Nano, 2015, 9(1), 991.
113 Duan X, Xiao J, Yin Q, et al. ACS Nano, 2013, 7(7), 5858.
114 Zhao C Y, Cheng R, Yang Z, et al. Molecules, 2018, 23(4), 826.
115 Meng X, Zhang X, Liu M, et al. Applied Materials Today, 2020, 21, 100864.
116 Zhu Y, Shi H, Li T, et al. ACS Applied Materials & Interfaces, 2020, 12(16), 18309.
117 Chung C H, Jung W, Keum H, et al. ACS Nano, 2020, 14(6), 6887.
118 Huang L, Wan J, Wu H, et al. Nano Today, 2021, 36, 101030.
119 Prise K M, Schettino G, Folkard M, et al. The Lancet Oncology, 2005, 6(7), 520.
120 Fan W, Shen B, Bu W, et al. Biomaterials, 2014, 35(32), 8992.
121 Chen G, Roy I, Yang C, et al. Chemical Reviews, 2016, 116(5), 2826.
122 Shanmugam V, Selvakumar S, Yeh C S. Chemical Society Reviews, 2014, 43(17), 6254.
123 Li X, Lovell J F, Yoon J, et al. Nature Reviews Clinical Oncology, 2020, 17(11), 657.
124 Richter K, Haslbeck M, Buchner J. Molecular Cell, 2010, 40(2), 253.
125 Knavel E M, Brace C L. Techniques in Vascular & Interventional Radio-logy, 2013, 16(4), 192.
126 Hu S H, Fang R H, Chen Y W, et al. Advanced Functional Materials, 2014, 24(26), 4144.
127 Liang Y, An R, Du P, et al. Nano Today, 2023, 48, 101751.
128 Wang Y, Wang H, Liu D, et al. Biomaterials, 2013, 34(31), 7715.
129 Liu X, Xu N, Pu X, et al. Journal of Materials Chemistry B, 2022, 10, 4605.
[1] 路正楠, 张鹏, 盛扬, 孙一新, MarkBradley, 张嵘. 鲁米诺自发光在聚氨酯光敏剂介导光动力治疗中的应用[J]. 材料导报, 2025, 39(1): 23110275-7.
[2] 王朋飞, 徐胜楠, 魏杰, 刘文娟, 顾忠伟, 张亚男. 肽类树状大分子的功能化修饰及在肿瘤治疗和诊断中的应用综述[J]. 材料导报, 2022, 36(11): 20080149-8.
[3] 武彧, 刘家成. 不同类型锌卟啉自组装染料敏化太阳能电池[J]. 材料导报, 2021, 35(z2): 479-482.
[4] 邬欣, 曾利胜, 王剑龙, 李建. 无机纳米颗粒在癌症治疗中的研究进展[J]. 材料导报, 2021, 35(Z1): 87-93.
[5] 许智鹏, 吉静茹, 刘育红, 强军锋. UV固化脂环族环氧树脂体系的设计及其响应面优化[J]. 材料导报, 2021, 35(14): 14190-14197.
[6] 申欣, 孟昭旭, 廉鹤. 纳米羟基磷灰石复合材料在癌症治疗中的应用进展[J]. 材料导报, 2020, 34(Z2): 88-90.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed