Please wait a minute...
材料导报  2024, Vol. 38 Issue (7): 22090123-5    https://doi.org/10.11896/cldb.22090123
  高分子与聚合物基复合材料 |
浸渍活性炭吸附放射性碘甲烷后失活机理研究
张佳倩1,2,3, 王坤俊4,*, 杨超3,5, 杨颂2,3, 上官炬1,3, 王冰凝1,2,3, 刘守军2,3
1 太原理工大学省部共建煤基能源清洁高效利用国家重点实验室,太原 030024
2 太原理工大学化学工程与技术学院,太原 030024
3 山西省民用洁净燃料工程研究中心,太原 030024
4 中国辐射防护研究院环境工程技术研究所,太原 030006
5 太原理工大学环境工程学院,太原 030024
Study on Deactivation Mechanism of Radioactive Methyl Iodide Adsorbed by Impregnated Activated Carbon
ZHANG Jiaqian1,2,3, WANG Kunjun4,*, YANG Chao3,5, YANG Song2,3, SHANGGUAN Ju1,3, WANG Bingning1,2,3, LIU Shoujun2,3
1 State Key Laboratory of Clean and Efficient Coal Utilization, Taiyuan University of Technology, Taiyuan 030024, China
2 College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan 030024, China
3 Shanxi Civil Clean Fuel Engineering Research Center, Taiyuan 030024, China
4 Department of Environmental Engineering Technology, China Institute for Radiation Protection, Taiyuan 030006, China
5 College of Environmental Engineering, Taiyuan University of Technology, Taiyuan 030024, China
下载:  全 文 ( PDF ) ( 6878KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 核电站通风净化系统采用浸渍活性炭(IMAC)吸收核反应所产生的放射性气态碘,以确保环境及人员安全。IMAC长时间连续使用后吸附效率明显下降。明晰IMAC的失活机理,对延长其使用寿命及后续高值化利用研究意义重大。选用基炭、浸渍活性炭、失活活性炭为研究对象,分析了其微观形貌和物相组成,探讨了IMAC失活前后的变化规律,推断其失活机理。结果表明:IMAC主要活性组分三乙烯二胺(TEDA)部分与碘甲烷发生反应生成四铵盐,且TEDA易分解,含量减少90%以上。环境中的氧化性物质和IMAC表面含氧官能团对活性炭造成不同程度的氧化,同时微孔比表面积占总比表面积由85%下降至40%以下,碘甲烷吸附场所减少。以上原因造成IMAC表面结构改变,活性位点减少,导致其吸附效率下降。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张佳倩
王坤俊
杨超
杨颂
上官炬
王冰凝
刘守军
关键词:  浸渍活性炭  碘甲烷  三乙烯二胺(TEDA)  微孔  失活    
Abstract: Impregnated activated carbon (IMAC) is used in the ventilation and purification system of nuclear power plant to absorb radioactive gaseous iodide produced by nuclear reaction, so as to ensure the safety of environment and personnel. The adsorption efficiency of IMAC decreases obviously after long time continuous use. A clear understanding of the inactivation mechanism of IMAC is significant for prolonging its service life and subsequent high-value utilization research. Based carbon, impregnated activated carbon and deactivated activated carbon were selected as the research objects. The microstructure and phase composition of the sample activated carbon were analyzed, and the change law before and after IMAC deactivation was discussed, and the mechanism of deactivation was inferred. The results showed that triethylenediamine (TEDA) as the main active component in IMAC, partially reacted with methyl iodide to form quaternary ammonium salt, and TEDA was easily decomposed, and its content was reduced by more than 90%. The oxidizing substances in the environment and oxygen-containing functional groups on the surface of IMAC cause different degrees of oxidation on activated carbon. Meanwhile, the total pore volume occupied by micropores decreases from 85% to less than 40%, and the methyl iodide adsorption sites decrease. Due to the above reasons, the surface structure of IMAC is changed, the active site is reduced, and the adsorption efficiency is decreased.
Key words:  impregnated activated carbon    methyl iodide    triethylenediamine (TEDA)    micropore    deactivation
出版日期:  2024-04-10      发布日期:  2024-04-11
ZTFLH:  TL941  
基金资助: 国家自然科学基金(21878210);山西省专利转化专项计划项目(202202054);中核集团青年英才菁英项目(CNNC-2021-28);山西省科技成果转化引导专项计划(202104021301052)
通讯作者:  王坤俊,中国辐射防护研究院研究员。2010年毕业于太原理工大学化学与化工学院,获硕士学位。同年入职中国辐射防护研究院环境工程技术研究所,主要从事核空气净化理论与技术研究,重点开展放射性气体吸附材料、净化技术的开发以及应用研究。发表学术论文20余篇,授权国家发明专利10余项。wkj_211886@163.com   
作者简介:  张佳倩,2019年7月于太原理工大学获得工学学士学位。现为太原理工大学化学工程与技术学院硕士研究生,在上官炬教授的指导下进行研究。目前主要研究领域为气态放射性碘的吸附。
引用本文:    
张佳倩, 王坤俊, 杨超, 杨颂, 上官炬, 王冰凝, 刘守军. 浸渍活性炭吸附放射性碘甲烷后失活机理研究[J]. 材料导报, 2024, 38(7): 22090123-5.
ZHANG Jiaqian, WANG Kunjun, YANG Chao, YANG Song, SHANGGUAN Ju,
WANG Bingning, LIU Shoujun. Study on Deactivation Mechanism of Radioactive Methyl Iodide Adsorbed by Impregnated Activated Carbon. Materials Reports, 2024, 38(7): 22090123-5.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.22090123  或          https://www.mater-rep.com/CN/Y2024/V38/I7/22090123
1 Li B, Dong X, Wang H, et al. Nature Communications, 2017, 8, 1.
2 Ma S, Islam S M, Shim Y, et al. Chemistry of Materials, 2014, 26(24), 7114.
3 Wu Y. Energy Policy, 2017, 101, 484.
4 Nenoff T M, Rodriguez M A, Soelberg N R, et al. Microporous and Mesoporous Materials, 2014, 200, 297.
5 Sassi M, Ritzmann A M, Henson N J. The Journal of Physical Chemistry C, 2020, 124(39), 21461.
6 Leonard A, Wullens H, Blacher S, et al. Separation and Purification Technology, 2008, 64(1), 127.
7 Cao D P, Wu J Z. Carbon, 2005, 43(7), 1364.
8 Song P F. Study on the performance and measurement technology of 131I adsorption on activated carbon. Master’s Thesis, University of South China, China, 2006 (in Chinese).
宋培峰. 活性炭吸附131I的性能及测量技术研究. 硕士学位论文. 南华大学, 2006.
9 Zhou J B, Hao S, Gao L P. Laser Physics, 2014, 24(4), 1.
10 Yang L, Jia Y Y, Cheng J, et al. The Canadian Journal of Chemical Engineering, 2019, 97(10), 2708.
11 Hwang S Y, Lee G B, Kim J H, et al. Molecules, 2020, 25(19), 1.
12 Carrasco-Marín F, Rivera-Utrilla J, Joly J P, et al. Journal of the Chemical Society Faraday Transactions, 1996, 92(15), 2779.
13 Wang K J, Wu Z L, Chang S, et al. New Chemical Materials, 2020, 48(9), 164 (in Chinese).
王坤俊, 吴振龙, 常森, 等. 化工新型材料, 2020, 48(9), 164.
14 Xue S F. Preparation of coconut shell activated carbons by deep activation and their analysis of electrochemical properties. Master’s Thesis, China University of Mining and Technology, China, 2019(in Chinese).
薛胜凡. 椰壳活性炭的深度活化及其电化学性能研究. 硕士学位论文, 中国矿业大学, 2019.
15 Jia H J, Lei Q F. Shanxi Chemical Industry, 2017(4), 60 (in Chinese).
贾慧杰, 雷倩芬. 山西化工, 2017(4), 60.
16 Jiang Y, Liu D Q, Xie Q. Clean Coal Technology, 2018, 24(1), 26 (in Chinese).
蒋煜, 刘德钱, 解强. 洁净煤技术, 2018, 24(1), 26.
17 Su W. Studies on the preparation and characterization of microporous activated carbon from coconut shell. Ph. D. Thesis, Tianjin University, China, 2003 (in Chinese).
苏伟. 椰壳基微孔活性炭制备与表征研究. 博士学位论文, 天津大学, 2003.
18 National Standards of the People’s Republic of China. GB/T 12496. 8—1999, Test methods of wooden activated carbon-Determination of iodine number, 1999 (in Chinese).
中华人民共和国国家标准, GB/T 12496. 8—1999, 木质活性炭试验方法碘吸附值的测定, 1999.
19 Ho K, Chun H, Lee H C, et al. Chemical Engineering Journal, 2019, 373, 1003.
20 Yin C Y, Aroua M K, Daud W M A W. Separation and Purification Technology, 2007, 52(3), 403.
21 Mao A Q, Wang H, Tan L H, et al. Applied Chemical Industry, 2011, 40(7), 1266 (in Chinese).
冒爱琴, 王华, 谈玲华, 等. 应用化工, 2011, 40(7), 1266.
22 Rampe M J, Tiwow V. Journal of Physics: Conference Series, 2018, 1028(1), 012033.
23 Wang L Y, Wu W T, Zhao B, et al. Journal of Functional Materials, 2024, 55(2),2124.
王丽艳, 武文婷, 赵冰, 等. 功能材料, 2024, 55(2),2124.
[1] 董伟, 刘苏磊, 王旭东, 许富民. 脉冲微孔喷射法的应用研究进展[J]. 材料导报, 2025, 39(3): 24020091-9.
[2] 许家杰, 钟金成, 陈麒, 杨鑫, 龚维. 微孔发泡材料成型装置及其可视化研究进展[J]. 材料导报, 2024, 38(10): 22100121-10.
[3] 贾海林, 项海军, 郭明生, 赵万里, 赵晓举, 张民远, 于水军. 深热井巷热害隔离材料复配体系及性能研究[J]. 材料导报, 2022, 36(20): 21050031-10.
[4] 王明飞, 陈鹏, 陶雷, 薛宇, 刘敬业, 王学谦, 马懿星, 王郎郎, 李佳奇. 有机硫水解催化剂研究进展[J]. 材料导报, 2022, 36(17): 20080196-9.
[5] 张立昌, 蔡超, 谭金婷, 周江峰, 王园, 潘牧. 质子交换膜燃料电池微孔层在反极过程中的耐久性研究[J]. 材料导报, 2022, 36(14): 21030086-7.
[6] 陆强, 吴亚昌, 徐明新, 曲艳超, 王涵啸, 裴鑫琦, 欧阳昊东. 抗高温失活SCR脱硝催化剂研究进展[J]. 材料导报, 2022, 36(13): 20090242-9.
[7] 马驰, 王连慧, 潘崇祥, 刘紫婷, 王娜, 史颖. 泡孔聚合物压电材料的研究进展[J]. 材料导报, 2021, 35(7): 7199-7204.
[8] 文华银, 张文焕, 贺婉, 刘涛, 罗世凯, 周元林. 超临界CO2制备三元乙丙橡胶微孔泡沫[J]. 材料导报, 2021, 35(2): 2166-2170.
[9] 张恒, 周玉惠, 张飞, 龚维, 何力. 聚丙烯/β-环糊精复合材料发泡性能及力学性能的研究[J]. 材料导报, 2020, 34(4): 4148-4152.
[10] 杨晨光, 赵全, 张茂江, 邢哲, 吴国忠. 聚四氟乙烯微粉对超临界CO2发泡聚丙烯泡孔结构及性能的改善[J]. 材料导报, 2019, 33(21): 3547-3551.
[11] 王明, 李星. 超临界二氧化碳技术制备的聚丙烯/三元乙丙橡胶开孔发泡材料的吸油行为[J]. 《材料导报》期刊社, 2018, 32(8): 1236-1240.
[12] 应建行, 刘智峰, 贺登峰, 陈忠仁. LLDPE/EPDM共混物的超临界CO2微孔发泡研究[J]. 《材料导报》期刊社, 2018, 32(4): 616-620.
[13] 鲁云华, 郝继璨, 李琳, 宋晶, 肖国勇, 胡知之, 王同华. 自具微孔聚合物PIM-1基热致刚性膜材料的制备及气体分离性能[J]. 材料导报, 2018, 32(16): 2876-2881.
[14] 葛胜涛, 邓先功, 毕玉保, 王军凯, 李赛赛, 韩磊, 张海军. 多级孔材料研究进展[J]. 《材料导报》期刊社, 2018, 32(13): 2195-2201.
[15] 黄凯兵, 杨秀文, 王智健, 姚异渊. 基于四羟甲基甘脲前驱体的新型含氮富微孔活性炭制备及其性能研究[J]. 《材料导报》期刊社, 2017, 31(4): 30-35.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed