Please wait a minute...
材料导报  2020, Vol. 34 Issue (Z2): 88-90    
  无机非金属及其复合材料 |
纳米羟基磷灰石复合材料在癌症治疗中的应用进展
申欣1,2, 庞宇2, 孟昭旭1, 廉鹤1
1 沈阳药科大学医疗器械学院,本溪 117004
2 沈阳药科大学药学院,本溪 117004
Application Progress of Nano Hydroxyapatite Composites in Cancer Treatment
SHEN Xin1,2, PANG Yu2, MENG Zhaoxu1, LIAN He1
1 School of Medical Devices, Shenyang Pharmaceutical University, Benxi 117004, China
2 School of Pharmacy, Shenyang Pharmaceutical University, Benxi 117004, China
下载:  全 文 ( PDF ) ( 2110KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 羟基磷灰石(Hydroxyapatite,HAP)是人体骨骼及牙齿的主要无机成分,具有优良的生物相容性和生物活性,常被用作骨骼的替代材料,在生物医学、涂层材料、污水处理等领域也得到广泛应用。相关研究表明,HAP纳米粒子及基于HAP的纳米复合材料均可以选择性抑制癌细胞生长,其抗肿瘤特性引发众多学者关注。当羟基磷灰石的尺寸达到纳米级别时,其可表现出独特的性能。与传统的 HAP粒子相比,纳米级 HAP 具有高比表面积、高表面能、靶向性等特性,同时其表面粗糙度高、亲和性强,更易吸附蛋白,表现出更佳的生物相容性。但普通纳米羟基磷灰石不稳定,在体内易发生聚沉,从而造成超粒径大、分布不均匀等问题,在临床应用上仍存在着较大障碍,制备HAP纳米复合体系可提高其在体内的适应性。   综合国内外相关研究报道介绍了HAP粒子的结构和性质及其在癌症治疗方面的作用机制和特点,并对基于HAP纳米粒子的复合物(HAP复合支架、交联技术的HAP纳米复合物、层层自组装HAP胶囊、杂化型HAP纳米粒子、主动靶向型HAP纳米复合物)在癌症治疗中的应用进行综述。同时对目前纳米HAP应用于癌症治疗中存在的问题进行了分析,并展望了其未来的发展趋势,以期为制备达到临床使用要求的集肿瘤诊断、治疗及术后修复为一体的新的治疗体系提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
SHEN Xin
PANG Yu
MENG Zhaoxu
LIAN He
关键词:  羟基磷灰石  纳米粒子  复合材料  癌症治疗    
Abstract: Hydroxyapatite (HAP) is the main inorganic component of human bones and teeth.With the excellent biocompatibility and bioactivity, it is widely used as a substitute for bone, and also widely used in biomedicine, coating materials, sewage treatment and other fields. Relevant studies have shown that HAP nanoparticles and HAP based nanocomposites can selectively inhibit the growth of cancer cells, and their anti-tumor properties have attracted many scholarś attention.Compared with traditional HAP particles, nano HAP has high specific surface area, high surface energy and targeting property. At the same time, it has high surface roughness and strong affinity, so it is easier to adsorb protein and shows better biocompatibility. However, the conventional nano hydroxyapatite is unstable and easy to agglomerate in vivo, which leads to the problems of large particle size and uneven distribution. There are still great obstacles in clinical application. The preparation of HAP nanocomposite system can improve its adaptability in vivo. The structure and properties of HAP particles, as well as the mechanism and characteristics of HAP particles in cancer treatment were introduced. The application of HAP nanoparticles based complexes in cancer treatment, including HAP composite scaffold, HAP nanocomposites by cross-linking technology, layer by layer self-assembly HAP capsules, hybrid HAP nanoparticles and active targeting HAP nanocomposites, were reviewed. At the same time, the existing problems in the application of nano HAP in cancer treatment were analyzed, and its future development trend was prospected, so as to provide a reference for the preparation of a new treatment system integrating tumor diagnosis, treatment and postoperative repair.
Key words:  hydroxyapatite    nanoparticles    composites    cancer therapy
               出版日期:  2020-11-25      发布日期:  2021-01-08
ZTFLH:  R318.08  
基金资助: 国家自然科学基金(81503020;31600764);辽宁省教育厅科学研究经费项目(2019LJC04);辽宁省自然科学基金指导计划(2019-ZD-0459);沈阳药科大学大学生创新创业训练计划项目(202010163026)
通讯作者:  lianhe126@126.com   
作者简介:  申欣,毕业于沈阳药科大学,于2020年7月获得理学学士学位,研究方向为新型生物医用材料。廉鹤,2014年获得沈阳药科大学药剂学博士学位,现为医疗器械学院生物医用材料教研室副教授。研究方向为生物材料和新型纳米药物递送系统。作为课题负责人主持国家自然科学基金项目1项,辽宁省自然科学基金1项,辽宁省教育厅项目1项,沈阳药科大学科研专项基金1项,另外参与国家自然科学基金4项。目前已在Mat. Sci. Eng C, J. Contrl. Res,Mol. Pharm, Colloids Surf. B, Biomaterial Science, Macromol. Biosci.等期刊发表论文20余篇,获得授权专利2项。
引用本文:    
申欣, 孟昭旭, 廉鹤. 纳米羟基磷灰石复合材料在癌症治疗中的应用进展[J]. 材料导报, 2020, 34(Z2): 88-90.
SHEN Xin, PANG Yu, MENG Zhaoxu, LIAN He. Application Progress of Nano Hydroxyapatite Composites in Cancer Treatment. Materials Reports, 2020, 34(Z2): 88-90.
链接本文:  
http://www.mater-rep.com/CN/  或          http://www.mater-rep.com/CN/Y2020/V34/IZ2/88
1 毛春玲, 刘雅茹, 吴孟霏, 等. 化学试剂, 2020, 42(6), 699.
2 田家明, 张波, 李苏, 等. 辽宁化工, 2009, 38(11), 828.
3 林敬轶.中国新通信, 2019, 21(3), 243.
4 王志新,刘莹, 杨晓民. 中国老年学杂志, 2007, 27(23), 2276.
5 唐胜利, 袁媛, 刘志苏, 等.肝脏, 2003, 8(1), 21.
6 王芊, 曹晶晶, 王宏刚, 等.现代肿瘤医学, 2020, 28(4), 530.
7 Qing F, Wang Z, Hong Y, et al.Journal of Materials Science-Materials in Medicine, 2012, 3(9), 2245.
8 欧阳晨曦, 陈道达, 冯凌云, 等.华中科技大学学报(医学版), 2006, 35(3), 354.
9 冯凌云, 李世普, 陈闻杰, 等. 中国有色金属学报, 1999(3), 651.
10 陈超, 王慧明. 实用肿瘤杂志, 2003(6), 459.
11 Hou C H, Hou S M, Hsueh Y S, et al.Biomaterials, 2009, 30, 3956.
12 Ye F, Guo H F, Zhang H J, He X L. Acta Biomaterialia, 2010, 6(6), 221.
13 董文韬, 陈侃, 李善高, 等. 浙江理工大学学报(自然科学版), 2017, 37(5), 727.
14 杨联军, 荣子杰, 张赞杰, 等.中国临床解剖学杂志, 2014, 32(5), 585.
15 邹清霞. 微纳结构HA/PDA/CMCS双功能复合支架的制备及其抗肿瘤和促成骨分化性能研究. 硕士学位论文, 华南理工大学, 2019.
16 罗诗裕. 具有光热效应的顺铂-PHA复合材料的抗肿瘤基础研究.硕士学位论文, 成都医学院, 2019.
17 朱潇依. NIR/pH响应羟基磷灰石基杂化微囊的自组装构筑及智能药物释放.硕士学位论文, 郑州大学, 2019.
18 李淼. 微量元素掺杂羟基磷灰石的制备及生物学效应研究.硕士学位论文, 上海师范大学, 2019.
19 马晓雨, 刘永佳, 朱邦尚. 无机化学学报, 2018, 34(5), 917.
20 Heng C, Zhou X, Zheng X, et al. Materials Science and Engineering:C, 2018, 91, 556.
21 李大龙. 介孔磷灰石基纳米药物控制释放体系的构建与生物学评价. 博士学位论文, 哈尔滨工业大学, 2017.
[1] 侯若梦, 贾瑛, 黄远征, 沈可可. 石墨烯复合材料在空气净化中的应用研究进展[J]. 材料导报, 2020, 34(Z2): 104-111.
[2] 贺龙朝, 荆磊, 余森, 徐云浩, 于振涛. 医用可降解镁基复合材料的研究现状及趋势[J]. 材料导报, 2020, 34(Z2): 323-326.
[3] 赵惠. 成型工艺对钨基复合材料界面组织和性能的影响[J]. 材料导报, 2020, 34(Z2): 351-355.
[4] 臧恒波, 乔菁. 无压浸渗工艺对Al2O3/Al-Mg-Si复合材料微观组织和力学性能的影响[J]. 材料导报, 2020, 34(Z2): 371-375.
[5] 于镇洋, 吕本元, 何威. 冷轧对原位生长三维石墨烯/铜基复合材料性能的影响[J]. 材料导报, 2020, 34(Z2): 390-394.
[6] 郝新超, 薛斌. 复合材料疲劳强度分布与疲劳验证载荷放大系数[J]. 材料导报, 2020, 34(Z2): 447-452.
[7] 王鑫, 张志彬, 胡振峰. 沸石分子筛在金属腐蚀防护领域的应用前景[J]. 材料导报, 2020, 34(Z2): 453-456.
[8] 车会凌, 赵元轶, 冉雄雄, 董皓月, 匡颖, 高姗姗. 不同形貌的纳米二氧化硅制备方法及其对高分子复合材料力学性能的影响综述[J]. 材料导报, 2020, 34(Z2): 484-489.
[9] 宋寒, 徐春晓, 王湘宁, 刘韬, 苏力军, 孙阔, 郭慧, 李文静. 不同树脂前驱体配比对无机酚醛气凝胶隔热复合材料性能的影响研究[J]. 材料导报, 2020, 34(Z2): 525-527.
[10] 李范, 张杨, 朱利民. 复合材料钻孔缺陷超声检测技术研究进展[J]. 材料导报, 2020, 34(Z2): 528-533.
[11] 林欢, 李万利, 蔡利海, 刘文言. 剪切增稠纤维复合材料的研究进展[J]. 材料导报, 2020, 34(Z2): 549-554.
[12] 刘克健, 高玉龙. 一种快速固化的环氧树脂基预浸料及其性能[J]. 材料导报, 2020, 34(Z2): 576-579.
[13] 魏凤春, 李明哲, 张晓, 关春龙. 碳纤维增强砂轮基体的有限元模态分析研究[J]. 材料导报, 2020, 34(Z2): 590-593.
[14] 李姗姗, 张雷, 王京红, 罗欣. 2.5维机织复合材料经纬向力学性能实验研究[J]. 材料导报, 2020, 34(Z2): 603-606.
[15] 杨松, 盛双华, 刘应开. 基于Au修饰的花状V2O5的表面增强拉曼散射研究[J]. 材料导报, 2020, 34(Z1): 34-38.
[1] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[2] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[3] GUO Hongjian, JIA Junhong, ZHANG Zhenyu, LIANG Bunu, CHEN Wenyuan, LI Bo, WANG Jianyi. Microstructure and Tribological Properties of VN/Ag Films Fabricated by Pulsed Laser Deposition Technique[J]. Materials Reports, 2017, 31(2): 55 -59 .
[4] WANG Wenjin, WANG Keqiang, YE Shenjie, MIAO Weijun, CHEN Zhongren. Effect of Asymmetric Block Copolymer of PI-b-PB on Phase Morphology and Properties of IR/BR Blends[J]. Materials Reports, 2017, 31(2): 96 -100 .
[5] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[6] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
[7] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[8] YAN Zhilong, LI Yongsheng, HU Kai, ZHOU Xiaorong. Progress of Study on Phase Decomposition of Duplex Stainless Steel[J]. Materials Reports, 2017, 31(15): 75 -80 .
[9] SHI Yu, ZHOU Xianglong, ZHU Ming, GU Yufen, FAN Ding. Effect of Filler Wires on Brazing Interface Microstructure and Mechanical Properties of Al/Cu Dissimilar Metals Welding-Brazing Joint[J]. Materials Reports, 2017, 31(10): 61 .
[10] DONG Fei,YI Youping,HUANG Shiquan,ZHANG Yuxun,. TTT Curves and Quench Sensitivity of 2A14 Aluminum Alloy[J]. Materials Reports, 2017, 31(10): 77 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed