Please wait a minute...
《材料导报》期刊社  2018, Vol. 32 Issue (2): 223-227    https://doi.org/10.11896/j.issn.1005-023X.2018.02.013
  物理   材料研究 |材料 |
一维含能金属有机框架的合成与性能研究
刘威,陈厚和
南京理工大学化工学院,南京 210094
1D Energetic Metal-organic Frameworks: Synthesis and Properties
Wei LIU,Houhe CHEN
School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094
下载:  全 文 ( PDF ) ( 1852KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 

为制备高能绿色起爆药,以5,5'-偶氮四唑钠盐为前驱体,硝酸亚铁提供金属离子,采用溶剂挥发法合成了一维含能金属有机框架化合物[Fe(ATZ)(H2O)4·2H2O]n。利用红外光谱、元素分析、X射线单晶衍射对其结构进行了表征和分析,用差式扫描量热仪分析了该化合物的热分解性能。基于最大放热原则,应用广义的Kamlet-Jacobs方法计算了化合物的爆轰性能,并对其撞击感度进行了测试。结果表明,该一维含能金属有机框架化合物的理论爆热、爆压、爆速分别为2 294.73 kJ/mol、34.54 GPa和8.83 km/s,撞击感度H50为39.0 cm,具有典型起爆药的特征,可作为一种优异的高能绿色起爆药。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘威
陈厚和
关键词:  金属有机框架 含能材料 5  5'-偶氮四唑钠盐 起爆药 含能配合物    
Abstract: 

To prepare high-energy green initiating explosive, an one-dimension energetic metal-organic frameworks (1D EMOFs) , [Fe(ATZ)(H2O)4·2H2O]n, based on sodium 5,5'-azotetrazolate salt and ferrous ion has been synthesized by solvent evaporation method. The structure of product was fully characterized by IR spectroscopy, elemental analysis and single-crystal X-ray diffraction. The thermal decomposition performance of product was researched by differential scanning calorimetry. In addition, detonation performances of compounds was predicted by arbitrary theory of the Kamlet-Jacobs method which bases on the largest exothermic principle. Moreover, the impact sensitivity of 1D EMOFs was also tested. Results show that the detonation heat, detonation pressure and detonation velocity of [Fe(ATZ)(H2O)4·2H2O]n were 2 294.73 kJ/mol, 34.54 GPa and 8.83 km/s, respectively, and the impact sensitivity was 39.0 cm. With characteristics of typical primers, the 1D EMOFs could be used as a high-energy green initiating explosive.

Key words:  metal-organic frameworks    energetic material    sodium 5    5'-azotetrazolate salt    initiating explosive    energetic coordination complex
出版日期:  2018-01-25      发布日期:  2018-01-25
ZTFLH:  TJ55  
引用本文:    
刘威,陈厚和. 一维含能金属有机框架的合成与性能研究[J]. 《材料导报》期刊社, 2018, 32(2): 223-227.
Wei LIU,Houhe CHEN. 1D Energetic Metal-organic Frameworks: Synthesis and Properties. Materials Reports, 2018, 32(2): 223-227.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.02.013  或          https://www.mater-rep.com/CN/Y2018/V32/I2/223
图1  [Fe(ATZ)(H2O)4·2H2O]n的合成装置
Compound [Fe(ATZ)(H2O)4·2H2O]n
Empirical formula C2H12FeN10O6
Formula weight 328.07
Crystal system Triclinic
Space group P-1
T/K 170
a/? 6.209 1
b/? 6.910 0
c/? 7.852 1
α 76.122
β 74.308
γ 70.427
V/?3 301.43
Z 1
Density, calculated/(g/cm3) 1.807 18
μ/mm-1 1.298
F(000) 168
Independent reflections 1 061
Data/restraint/parameters 1 061/9/100
Goodness-of-fit on F2 1.135
表1  [Fe(ATZ)(H2O)4·2H2O]n的晶体数据和结构精修参数
图2  [Fe(ATZ)(H2O)4·2H2O]n的晶体结构(电子版为彩图)
图3  Fe2+与ATZ2-的配位模式(电子版为彩图)
图4  [Fe(ATZ)(H2O)4·2H2O]n的红外光谱
图5  [Fe(ATZ)(H2O)4·2H2O]n的DSC曲线
Compound O2(g) CO2(g) H2O(g) Fe2O3(s) N2(g) NH3(g) C(s)
ΔfHm0/(kJ·mol-1) 0 -393.51 -241.82 -824.25 0 -46.11 0
表2  几种物质的标准摩尔生成焓
Compound ΔcUm0
kJ·mol-1
Q
kJ·mol-1
N
mol·g-1
M
g·mol-1
ρ0
g·cm-3
D
km·s-1
P
GPa
IS
cm
[Fe(ATZ)2(H2O)4]n -3 424.36 2 294.73 0.03 22.40 1.81 8.83 34.54 39
表3  [Fe(ATZ)(H2O)4·2H2O]n的爆轰参数和感度
1 Zhang T L, Wu B D, Yang L . Recent research progresses in energetic coordination compounds[J]. Chinese Journal of Energetic Materials, 2013,21(2):137(in Chinese).
2 张同来, 武碧栋, 杨利 , 等. 含能配合物研究新进展[J]. 含能材料, 2013,21(2):137.
3 Wang W, Chen S, Gao S . Syntheses and characterization of lead (Ⅱ) N, N-bis [1 (2) H-tetrazol-5-yl] amine compounds and effects on thermal decomposition of ammonium perchlorate[J]. European Journal of Inorganic Chemistry, 2009,2009(23):3475.
4 Wu B D, Zhou Z N, Li F G , et al. Preparation, crystal structures, thermal decompositions and explosive properties of two new high-nitrogen azide ethylenediamine energetic compounds[J]. New Journal of Chemistry, 2013,37(3):646.
5 Wu B D, Yang L, Wang S W , et al. Preparation, crystal structure, thermal decomposition, and explosive properties of a novel energetic compound [Zn (N2H4)2(N3)2]n: A new high-nitrogen material (N=65.60%)[J]. Zeitschrift für Anorganische und Allgemeine Chemie, 2011,637(3-4):450.
6 Wu B D, Bi Y G, Li F G , et al. A novel stable high-nitrogen energetic compound: Copper (Ⅱ) 1, 2-diaminopropane azide[J]. Zeitschrift für Anorganische und Allgemeine Chemie, 2014,640(1):224.
7 Zhang Q, Shreeve J M . Metal-organic frameworks as high explosives: A new concept for energetic materials[J]. Angewandte Chemie International Edition, 2014,53(10):2540.
8 Zhang S, Yang Q, Liu X , et al. High-energy metal-organic frameworks (HE-MOFs): Synjournal, structure and energetic performance[J]. Coordination Chemistry Reviews, 2016,307:292.
9 Qin J S, Zhang J C, Zhang M , et al. A highly energetic N-rich zeolite-like metal-organic framework with excellent air stability and insensitivity[J]. Advanced Science, 2015,2(12):1500150.
10 Bushuyev O S, Brown P, Maiti A , et al. Ionic polymers as a new structural motif for high-energy-density materials[J]. Journal of the American Chemical Society, 2012,134(3):1422.
11 Li S, Wang Y, Qi C , et al. 3D energetic metal-organic frameworks: Synjournal and properties of high energy materials[J]. Angewandte Chemie International Edition, 2013,52(52):14031.
12 Qu X, Zhai L, Wang B , et al. Copper-based energetic MOFs with 3-nitro-1 H-1, 2, 4-triazole: Solvent-dependent syntheses, structures and energetic performances[J]. Dalton Transactions, 2016,45(43):17304.
13 Liu X, Gao W, Sun P , et al. Environmentally friendly high-energy MOFs: Crystal structures, thermostability, insensitivity and remarkable detonation performances[J]. Green Chemistry, 2015,17(2):831.
14 Qu X N, Zhang S, Wang B Z , et al. An Ag (Ⅰ) energetic metal-organic framework assembled with the energetic combination of furazan and tetrazole: Synjournal, structure and energetic performance[J]. Dalton Transactions, 2016,45(16):6968.
15 Feng Y, Liu X, Duan L , et al. In situ synthesized 3D heterometallic metal-organic framework (MOF) as a high-energy-density material shows high heat of detonation, good thermostability and insensitivity[J]. Dalton Transactions, 2015,44(5):2333.
16 Qu X, Zhang S, Yang Q , et al. Silver (Ⅰ)-based energetic coordination polymers: Synjournal, structure and energy performance[J]. New Journal of Chemistry, 2015,39(10):7849.
17 Yang Q, Song X, Ge J , et al. A 2D nickel-based energetic MOFs incorporating 3, 5-diamino-1, 2, 4-triazole and malonic acid: Synjournal, crystal structure and thermochemical study[J]. The Journal of Chemical Thermodynamics, 2016,92:132.
18 Fischer D, Klap?tke T M, Stierstorfer J . Potassium 1,1'-dinitramino-5,5'-bistetrazolate: A primary explosive with fast detonation and high initiation power[J]. Angewandte Chemie International Edition, 2014,53(31):8172.
19 Tang Y, He C, Mitchell L A , et al. Potassium 4,4'-bis (dinitromethyl)-3,3'-azofurazanate: A highly energetic 3D metal-organic framework as a promising primary explosive[J]. Angewandte Chemie, 2016,128(18):5655.
20 Sun Y, Yan D, Zhu S , et al. Synjournal and characterization of zinc 5, 5'-azotetrazolate[J]. Chinese Journal of Energetic Materials, 2012,20(3):297(in Chinese).
21 孙艳苓, 颜冬林, 朱顺官 , 等. 5, 5'-偶氮四唑锌的合成及表征[J]. 含能材料, 2012,20(3):297.
22 Kamlet M J, Jacobs S . Chemistry of detonations. Ⅰ. A Simple method for calculating detonation properties of C-H-N-O explosives[J]. The Journal of Chemical Physics, 1968,48:23.
23 Kamlet M J, Ablard J . Chemistry of detonations. Ⅱ. Buffered Equilibria[J]. The Journal of Chemical Physics, 1968,48:36.
24 Kamlet M J, Dickinson C . Chemistry of detonations. Ⅲ. Evaluation of the simplified calculational method for Chapman-Jouguet detonation pressures on the basis of available experimental information[J]. The Journal of Chemical Physics, 1968,48:43.
25 Kamlet M J, Hurwitz H . Chemistry of detonations. Ⅳ. Evaluation of a simple predictional method for detonation velocities of C-H-N-O explosives[J]. The Journal of Chemical Physics, 1968,48:3685.
26 4 Wang Y, Zhang J, Su H , et al. A simple method for the prediction of the detonation performances of metal-containing explosives[J]. The Journal of Physical Chemistry A, 2014,118(25):4575.
27 25 傅献彩, 沈文霞 , 等. 物理化学(上)[M]. 北京: 高等教育出版社. 2005.
28 26 GJB5891.22-2006. 机械撞击感度实验[S].
29 27 蒋荣光, 刘自铴 . 起爆药[M]. 北京: 兵器工业出版社. 2006.
[1] 李少杰, 张云峰, 张玉令, 闫军, 杜仕国, 陈博. 纳米改性超高性能混凝土板在爆炸荷载下的动态响应试验研究[J]. 材料导报, 2024, 38(11): 22110130-9.
[2] 孙玉玲, 马宏昊, 沈兆武, 杨明, 田启超. 槽型结构316L/CuCrZr真空熔铸复合技术的研究[J]. 材料导报, 2022, 36(23): 21050179-5.
[3] 任秀秀, 赵省向, 韩仲熙, 邢晓玲. 纳米复合含能材料的制备方法、复合体系及其性能的研究进展[J]. 材料导报, 2019, 33(23): 3939-3948.
[4] 杭思羽, 徐闻婷, 韩志伟, 王伯良. 铝-氟聚物含能亚稳态复合材料研究进展[J]. 材料导报, 2019, 33(Z2): 410-414.
[5] 杨雄, 黄亚峰, 王晓峰. NTO在混合炸药中的应用及其酸性问题的研究进展[J]. 材料导报, 2019, 33(Z2): 627-629.
[6] 姚旭, 张光友, 刘博, 谢拯, 王煊军. 基于纳米金生长比色检测水体中的肼[J]. 材料导报, 2019, 33(z1): 310-313.
[7] 任秀秀, 朱一举, 赵省向, 韩仲熙, 姚李娜. 四种含能晶体微观力学性能与摩擦性能的关系[J]. 材料导报, 2019, 33(z1): 448-452.
[8] 陶俊, 王晓峰, 韩仲熙, 冯博, 南海, 谢中元, 黄亚峰. 铝粉/聚四氟乙烯机械活化含能材料的制备及其微观性能研究[J]. 材料导报, 2018, 32(6): 894-898.
[9] 刘建国, 安振涛, 张倩, 杜仕国, 姚凯, 王金. 硝酸羟胺的热稳定性评估及热分解机理研究*[J]. 《材料导报》期刊社, 2017, 31(4): 145-152.
[10] 姚启发, 杜修忻, 张艳杰, 夏敏, 罗运军. 新型氟碳粘合剂的制备及性能[J]. 材料导报, 2020, 34(10): 10187-10191.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed