Please wait a minute...
《材料导报》期刊社  2018, Vol. 32 Issue (10): 1737-1742    https://doi.org/10.11896/j.issn.1005-023X.2018.10.031
  计算模拟 |
碳纳米豆荚内C60分子的振荡行为
方 炜,王 磊
河海大学力学与材料学院,南京 211100
Investigation on Oscillatory Behavior of C60 Molecule in Carbon Nanopeapods
FANG Wei, WANG Lei
College of Mechanics and Materials, Hohai University, Nanjing 211100
下载:  全 文 ( PDF ) ( 2665KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 近年来C60分子与碳纳米豆荚组成的碳纳米豆荚的高频振荡行为受到了学术界的广泛关注,并有望在振荡器元器件等领域获得潜在应用。本工作基于分子动力学模拟方法,结合碳-碳多体势函数和Lennard Jones对势函数,对碳纳米豆荚中C60分子的振荡行为进行了模拟研究,并分别讨论了碳纳米管长度、直径及轴向预应力对碳纳米豆荚振荡性能的影响。研究结果表明,C60分子受到其与碳管间的长程范德华力及滑动摩擦力的作用,沿碳纳米管轴线方向做周期性往复振荡运动。碳纳米管长度和直径的增加均会导致C60分子振荡频率单调减小,且存在一个振荡发生的临界直径下限值;由于范德华力相互作用的影响,当直径较大时,C60分子将发生偏心振动,振荡轨迹偏离碳管轴线而贴近一侧管壁。轴向预应力对C60分子的振荡行为也有明显影响:随轴向拉伸预应力的增加,C60分子振荡频率单调减小;当轴向预应力为压应力时,C60分子振荡频率的衰减为分段线性模式,在越过临界压应力后急剧下降。这些研究结果将对基于碳纳米豆荚的高频振荡元器件的开发提供有益的指导与参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
方 炜
王 磊
关键词:  碳纳米豆荚  C60分子  振荡行为  分子动力学模拟  轴向预应力    
Abstract: Based on molecular dynamics simulation, combined with the AIREBO potential and Lennard Jones potential, the oscillation of C60 molecule in carbon nanopeapods were studied, with consideration on the influence of tube length, diameter and axial pre-stress. Results showed that the C60 molecule oscillates periodically along the axial direction of carbon nanotubes due to the long-range van der Waals interaction and sliding friction force. The increase of both tube length and diameter leads to a monotonously linear decrease of the oscillation frequency of the C60 molecule, and there exists a lower critical diameter where an oscillation can occur. Due to the effect of the van der Waals interaction, when the tube diameter is larger, the oscillation track of C60 molecule deviates from the tube axis and becomes close to one side tube wall. Axial pre-stress also has a strong influence on the oscillation: the oscillation frequency of C60 molecule decreases linearly with the increase of tensile pre-stress, while decays in a piecewise linear mode when the axial compressive pre-stress rises. A sharp decline happens after a critical compressive pre-stress. These results may provide helpful guidelines and reference to future development of high-frequency oscillation components based on carbon nanopeapods.
Key words:  carbon nanopeapods    C60 molecule    oscillatory behavior    molecular dynamics simulation    axial pre-stress
出版日期:  2018-05-25      发布日期:  2018-07-06
ZTFLH:  TB332  
基金资助: 国家自然科学基金(11472098);教育部“新世纪优秀人才”支持计划资助课题(NCET-13-0773)
通讯作者:  王磊:通信作者,男,1980年生,博士,副教授,博士研究生导师,主要从事新型功能材料变形与力学行为的多尺度模拟、微纳尺度碳材料的力学行为与应用等研究 E-mail:wangL@hhu.edu.cn   
作者简介:  方炜:男,1993年生,硕士研究生,主要从事微纳尺度碳材料的力学行为与应用等研究 E-mail:duck0013@163.com
引用本文:    
方 炜,王 磊. 碳纳米豆荚内C60分子的振荡行为[J]. 《材料导报》期刊社, 2018, 32(10): 1737-1742.
FANG Wei, WANG Lei. Investigation on Oscillatory Behavior of C60 Molecule in Carbon Nanopeapods. Materials Reports, 2018, 32(10): 1737-1742.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.10.031  或          https://www.mater-rep.com/CN/Y2018/V32/I10/1737
1 Iijima S. Helical microtubules of graphic carbon[J]. Nature,1991,354:56.
2 Li Feng,Bai Shuo,Cheng Huiming.Carton nanotube[J].New Carbon Materials,2000,15(3):79(in Chinese).
李峰,白朔,成会明.纳米碳管[J].新型炭材料,2000,15(3):79.
3 Xin Hao,Han Qiang,Yao Xiaohu. Influences of atom vacancies on buckling properties of armchair single-walled carbon nanotubes shown by molecular dynamics simulation[J]. Acta Physica Sinica,2008,57(7):4391(in Chinese).
辛浩,韩强,姚小虎.单、双原子空位缺陷对扶手椅型单层碳纳米管屈曲性能的不同影响[J].物理学报,2008,57(7):4391.
4 Wang Lei,Zhang Hongwu,Wang Jinbao. Influence of van der Waals force on the buckling of double-walled carbon nanotubes[J]. Acta Physica Sinica,2007,56(3):1506(in Chinese).
王磊,张洪武,王晋宝.范德华力对双壁碳纳米管轴向压缩屈曲行为的影响[J].物理学报,2007,56(3):1506.
5 Cai K, Yin H, Qin Q H, et al.Self-excited oscillating of double-walled carbon nanotubes[J]. Nano Letters,2014,14(4):2558.
6 Harris P J F. Carbon nanotubes and related structures[M]. Cambridge: Cambridge University Press,2002.
7 Wang L, Zhang H W, Zhang Z Q, et al. Buckling behaviors of single-walled carbon filled with metal atoms[J]. Applied Physica Letters,2007,91(5):051122.
8 Xie Fang,Zhu Yabo,Zhang Zhaohui, et al. Molecular dynamics si-mulation of multi-wall carbon nanotube oscillators[J]. Acta Physica Sinica,2008,57(9):5833(in Chinese).
谢芳,朱亚波,张兆慧,等.碳纳米管振荡的分子动力学模拟[J].物理学报,2008,57(9):5833.
9 Smith B W, Monthioux M, Luzzi D E. Encapsulated C60 in carbon nanotubes[J].Nature,1998,396:323.
10 Okada S, Saito S, Oshiyama A. Energetics and electronic structures of carbon nanotubes encapsulating C60[J]. Physical Review Letters,2001,86:3835.
11 Liu P, Zhang Y W, Lu C. Oscillatory behavior of C60-nanotube oscillators: A molecular-dynamics study[J]. Journal of Applied Phy-sics,2005,97:094313.
12 Song H Y, Zha X W. Molecular dynamics study of effects of radius and defect on oscillatory behaviors of C60-nanotube oscillators[J]. Physics Letters A,2009,373:1058.
13 Cui L, Feng Y H, Tan P, et al. Oscillatory behavior of carbon na-nopeapods: A molecular dynamics simulation[J]. Chinese Science Bulletin,2015,60: 1414(in Chinese).
崔柳,冯妍卉,檀鹏,等.碳纳米豆荚内C60分子振荡行为的模拟[J].科学通报,2015,60:1414.
14 Zheng Q, Liu J Z,Jiang Q. Excess van der Waals interaction energy of a multiwalled carbon nanotube with an extruded core and the induced core oscillation[J]. Physical Review B,2002,65:245409.
15 Plimpton S. Fast parallel algorithms for short-range molecular dynamics[J]. Journal of Computational Physics,1995,117:1.
16 Stuart S J, Tutein A B, Harrison J A. A reactive potential for hydrocarbons with intermolecular interactions[J].Journal of Chemical Physics,2000,112(14):6472.
17 Brenner D W, Shenderova O A, Harrison J A, et al. A second-ge-neration reactive empirical bond order (REBO) potential energy expression for hydrocarbons[J].Journal of Physics Condensed Matter,2002,14(4):783.
18 Baskes M I. Many-body effects in fcc metals: A Lennard-Jones embedded-atom potential[J]. Physical Review Letters,1999,83(13):2592.
19 Cox B J, Thamwattana N, Hill J M. Mechanics of atoms and fullerenes in single-walled carbon nanotubes. Ⅰ. Acceptance and suction energies[J]. Proceedings of the Royal Society of London Series A,2007,463:461.
20 Cox B J, Thamwattana N, Hill J M. Mechanics of atoms and fullerenes in single-walled carbon nanotubes. Ⅱ. Oscillatory beha-vior[J]. Procee-dings of the Royal Society of London Series A,2007,463:477.
21 Wang Feng,Zeng Xianghua,Xu Xiulian. Doping mechanism of fullerenes into carbon nanotubes[J]. Acta Physica Sinica,2002,51(8):1778(in Chinese).
王锋,曾祥华,徐秀莲.碳纳米管中封装富勒烯的机理[J].物理学报,2002,51(8):1778.
[1] 周祎伟, 段海涛, 李健, 马利欣, 李文轩, 尤锦鸿, 贾丹. 外加磁场对摩擦副材料摩擦磨损及抗腐蚀性能影响的研究进展[J]. 材料导报, 2025, 39(2): 23110090-19.
[2] 耿长建, 杨怡斌, 由宝财, 董会苁, 马海坤. 成分相关的单晶Cr-Co-Ni合金形变机制的分子动力学模拟研究[J]. 材料导报, 2025, 39(2): 23120142-5.
[3] 李亚莎, 田泽, 王璐敏, 庞梦昊, 曾跃凯, 赵光辉. 表面接枝KH550 的石墨烯改性聚二甲基硅氧烷热力学性能的分子动力学模拟[J]. 材料导报, 2025, 39(2): 24010155-6.
[4] 郑度奎, 李敬法, 宇波, 黄志强, 张引弟, 刘翠伟, 赵杰, 韩东旭. 非金属PE管材氢气-甲烷渗透研究进展[J]. 材料导报, 2024, 38(16): 23020018-11.
[5] 李泽政, 申宏飞, 吴文平. 含孔洞Cu64Zr36及Cu/Cu64Zr36复合材料拉伸变形的分子动力学研究[J]. 材料导报, 2024, 38(15): 23040235-6.
[6] 章凯倩, 王志伟, 曾少甫, 胡长鹰. 再生聚乙烯中挥发性气味物质扩散的分子动力学模拟[J]. 材料导报, 2023, 37(22): 22080036-8.
[7] 董会苁, 杨柳, 耿长建, 苏孺, 刘猛. 含空洞镍基单晶高温合金力学性能的分子动力学研究[J]. 材料导报, 2023, 37(15): 21100100-8.
[8] 白清顺, 郭万民, 窦昱昊, 郭永博, 张飞虎. 石墨烯与不锈钢微结构表面黏附行为的分子动力学模拟研究[J]. 材料导报, 2023, 37(1): 21050249-6.
[9] 曹晶晶, 张玉迪, 邓玉媛, 徐新宇. 不同尺寸的碳纳米管接枝聚酰亚胺复合材料的分子动力学模拟[J]. 材料导报, 2022, 36(23): 21060264-5.
[10] 刘冬梅, 张典, 彭艳周, 张亚利, 姚惠芹. 柠檬酸钠对半水石膏不同晶面结晶习性及力学性能的影响[J]. 材料导报, 2021, 35(18): 18052-18058.
[11] 裴培, 彭勇波. 基于分子动力学的磁流变液微观结构演化模拟与动态聚合分析[J]. 材料导报, 2021, 35(12): 12001-12007.
[12] 王晴, 康升荣, 吴丽梅, 张强, 丁兆洋. 地聚合物凝胶结构建模及分子动力学模拟[J]. 材料导报, 2020, 34(4): 4056-4061.
[13] 李少杰, 闫军, 杜仕国, 鲁彦玲, 蔡军锋. 聚脲弹性体微相分离研究及主要进展[J]. 材料导报, 2020, 34(21): 21205-21210.
[14] 郭丽婷, 李晓延, 姚鹏, 李扬. 电场作用下Cu/Cu3Sn界面原子扩散行为的分子动力学模拟[J]. 材料导报, 2020, 34(2): 2137-2141.
[15] 马玉聪, 樊保民, 郝华, 吕金玉, 杨彪, 冯云皓. 肉桂醛超分子缓蚀剂对冷凝水中铁含量的净化机理[J]. 材料导报, 2018, 32(20): 3660-3666.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed