Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (7): 121-128    https://doi.org/10.11896/j.issn.1005-023X.2017.07.019
  先进结构复合材料 |
三维编织复合材料紧固件剪切强度预报
刘发齐, 关志东, 边天涯
!北京航空航天大学航空科学与工程学院,北京 100191
Prediction of Shear Strength for 3D Braided Composite Fastener
LIU Faqi, GUAN Zhidong, BIAN Tianya
School of Aeronautic Science and Engineering, Beihang University, Beijing 100191
下载:  全 文 ( PDF ) ( 2300KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 建立了三维缎纹编织复合材料代表性体积单元(RVE)和紧固件剪切试件模型,引入周期性边界条件,建立了材料的宏观力学性能预报方法,并采用跨尺度计算方法对不同受载角度下的紧固件剪切破坏过程进行了有限元模拟。进行了三维缎纹编织复合材料紧固件的剪切试验,有限元计算结果与试验结果吻合较好,验证了本方法的可行性。分析了不同受载角度对剪切破坏模式及强度的影响,结果表明,该编织复合材料剪切强度随受载角度增大而降低,且具有不同的损伤起始位置和扩展过程。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘发齐
关志东
边天涯
关键词:  编织复合材料  紧固件  剪切强度  周期边界条件  有限元方法    
Abstract: A representative volume element (RVE) and shear specimen model of satin weave composite fastener is established and numerical model of prediction on effective elastic module is presented based on periodic boundary conditions. Cross-scale numerical simulation of shear failure in different load angle is implemented. The uniaxial shear tests of satin weave composite fastener are performed. The shear strength obtained from finite element method (FEM) is in good agreement with the experimental results, which demonstrated the feasibility of the FEM model. The influence of different load angle in shear failure mode and strength is discussed, which indicates the shear strength decreases as the load angle growth due to different failure mode.
Key words:  braided composite    fastener    shear strength    periodic boundary conditions    FEM
出版日期:  2017-04-10      发布日期:  2018-05-08
ZTFLH:  V257  
  TB332  
通讯作者:  关志东, 男, 1964年生,教授,主要研究方向为复合材料结构设计 E-mail:d5062010@163.com   
作者简介:  刘发齐:男,1991年生,博士研究生,研究方向为编织复合材料与结构设计 E-mail:buaalfq@163.com
引用本文:    
刘发齐, 关志东, 边天涯. 三维编织复合材料紧固件剪切强度预报[J]. 《材料导报》期刊社, 2017, 31(7): 121-128.
LIU Faqi, GUAN Zhidong, BIAN Tianya. Prediction of Shear Strength for 3D Braided Composite Fastener. Materials Reports, 2017, 31(7): 121-128.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.07.019  或          https://www.mater-rep.com/CN/Y2017/V31/I7/121
1 Lu Zixing, Yang Zhenyu, Li Zhongping. Development of investigation into mechanical behaviour of three dimensional braided compo-sites [J]. Acta Mater Compos Sin,2004,21(2):1(in Chinese).
卢子兴, 杨振宇, 李仲平. 三维编织复合材料力学行为研究进展[J]. 复合材料学报,2004,21(2):1.
2 Li Diansen, Liu Zixian, Lu Zixing. Numerical prediction for the elastic properties of three dimensional and five directional braided composites [J]. J Beijing University of Aeronautics and Astronautics,2008,34(8):891(in Chinese).
李典森, 刘子仙, 卢子兴. 三维五向编织复合材料弹性性能的数值预报[J]. 北京航空航天大学学报,2008,34(8):891.
3 Xu Kun, Xu Xiwu, Wang Hai. Experimental investigation of the mechanical properties of 3D 6-directional braided composites[J]. Acta Mater Compos Sin,2005,22(6):144(in Chinese).
徐焜, 许希武, 汪海. 三维六向编织复合材料力学性能的试验研究[J]. 复合材料学报,2005,22(6):144.
4 Chen L, Tao X M, Choy C L. Mechanical analysis of 3-D braided composites by the finite multiphase element method [J]. Compos Sci Technol,1999, 59:2383.
5 Xiong J J,Shenoi R A,Cheng X.A modified micromechanical curved beam analytical model to predict the tension modulus of 2D plain weave fabric composites [J].Composites Part B,2009,40:776.
6 Wei GaoFeng, Sun Xiaoqiang, Liu Guoyong, et al. Geometric model for three-dimensional braided composites and its numerical analysis [J]. Chin J Solid Mech,2011,32(3):65(in Chinese).
魏高峰, 孙晓强, 刘国永, 等. 三维编织复合材料几何建模及数值分析[J]. 固体力学学报,2011,32(3):65.
7 Liu Zhenguo, et al. Numerical prediction of the longitudinal and transversal moduli of three dimensional and 4-step braided compo-sites [J]. Acta Mater Compos Sin,2000, 17(2):66 (in Chinese).
刘振国,等. 三维四向编织复合材料剪切性能的数值预报[J]. 复合材料学报, 2000, 17(2):66.
8 Zeng Tao, et al. A finite element model for fai-lure analysis of 3D braided composites [J]. Mater Sci Eng, 2004,336(1):144.
9 Kan J. Investigation on characterization of micro and meso structures and their influence on effective properties of carbon/carbon compo-sites [D]. Harbin: Harbin Institute of Technology,2010(in Chinese).
阚晋. 碳/碳复合材料微细观结构的表征及对有效性能的影响研究[D]. 哈尔滨: 哈尔滨工业大学,2010.
10 Mu J W, Guan Z D, Bian T Y, et al. The experiment and numerical simulation of composite countersunk-head fasteners pull-through mechanical behavior [J]. Appl Compos Mater,2014, 21(5):773.
11 Guan Z D, Mu J W, et al. Pull-through mechanical behavior of composite fastener threads [J]. Appl Compos Mater, 2015,22(3):251.
12 Wang Xinfeng, Zhou Guangming, Wang Xinwei, et al. The stiffness reduction analyses of plain woven compositesunder shear condition[J]. J Astronautics,2008,34(8):1371(in Chinese).
王新峰, 周光明, 王鑫伟, 等. 平面机织复合材料在剪切载荷下损伤刚度折减分析[J]. 宇航学报,2007,28(5):1371.
13 Wang Xinfeng, Zhou Guangming, Zhou Chuwei, et al. Multi-scale analyses of woven composite based on periodical boundary condition [J]. J Nanjing University of Aeronautics and Astronautics,2005,37(6):730(in Chinese).
王新峰, 周光明, 周储伟, 等. 基于周期性边界条件的机织复合材料多尺度分析[J]. 南京航空航天大学学报,2005,37(6): 730.
14 Bian T Y, Guan Z D, Mu J W,et al. An analytical model for predicting the tension modulus and Poisson's ratio of satin weave compo-sites [C]∥20th International Conference on Composite Materials. Copenhagen, Denmark, 2015.
15 Martin Sherburn. Geometric and mechanical modelling of textiles [D]. London: The University of Nottingham,2007.
16 Xia Z H, Zhang Y F, Fernand E. A unified periodical boundary conditions for representative volume elements of composites and applications[J]. Int J Solid Struct,2003,40(8):1907.
17 Tian Jun. Multi scale research on mechanical behaviors of three dimensional woven composites [D]. Nanjing: Nanjing University of Aeronautics and Astronautics,2005(in Chinese) .
田俊. 三维机织复合材料的多尺度力学性能研究[D]. 南京: 南京航空航天大学,2008 .
18 Zhang Ping, Gui Liangjin, Fan Zijie. Study on the elastic properties of triaxially braided composites [J]. Eng Mech,2009, 26(1):31 (in Chinese).
张平, 桂良进, 范子杰. 三向编织复合材料弹性性能研究[J]. 工程力学,2009,26(1):31.
19 沈观林, 胡更开. 复合材料力学[M]. 北京: 清华大学出版社,2006.
20 Hashin Z. Failure criteria for unidirectional fiber composites [J]. J Appl Mech,1980,47:329.
21 Song S, Anthony M W, Khaled W S. Braided textile composites under compressive loads: Modeling the response, strength and degradation [J]. Compos Sci Technol,2007,67:3059.
22 Zhang Daxu, Hayhurst D R. Prediction of stress-strain and fracture behaviour of an 8-Harness satin weave ceramic matrix composite[J]. Int J Solids Struct, 2014,51:3762.
23 Ren Haolei, Liu Yuanyong, Jiao Guiqiong. A simulation of compression failure process and residual strength in laminated composites containing a prefab delamination damage [J]. Eng Mechan,2002,19(6):110(in Chinese).
任浩雷,刘元镛,矫桂琼. 含预制分层损伤复合材料层合板在压缩载荷下破坏过程和剩余强度的模拟[J]. 工程力学,2002,19(6):110.
|||
(上接第120页)
62 Kamata H, et al. Mercury oxidation over the V2O5(WO3)/TiO2 commercial SCR catalyst[J]. Ind Eng Chem Res,2008,47(21):8136.
63 Zhao L K, Li C T, Zhang X N, et al. A review on oxidation of elemental mercury from coal-fired flue gas with selective catalytic reduction catalysts[J]. Catal Sci Technol,2015,5(7):3459.
64 Stolle R, Koeser H, Gutberlet H. Oxidation and reduction of mercury by SCR DeNOx catalysts under flue gas conditions in coal fired power plants[J]. Appl Catal B: Environ,2014,144:486.
65 Li Y, Murphy P D, Wu C Y, et al. Development of silica/vanadia/titania catalysts for removal of elemental mercury from coal-combustion flue gas[J]. Environ Sci Technol,2008,42(14):5304.
66 Li H L. Catalytic oxidation of elemental mercury over novel SCR catalysts[D]. Wuhan: Huazhong University of Sci Technol,2011(in Chinese).
李海龙. 新型SCR催化剂对汞的催化氧化机制研究[D]. 武汉: 华中科技大学,2011.
67 Ye Z, et al. Impacts of acid gases on mercury oxidation across SCR catalyst[J]. Fuel Processing Technol,2007,88(10):929.
68 Yu J P. Experimental study on mercury oxidation of modified SCR catalyst[D]. Hangzhou: Zhejiang University,2015(in Chinese).
俞晋频. 改性SCR催化剂汞氧化试验研究[D]. 杭州: 浙江大学,2015.
[1] 仵金玲, 刘思雨, 张彪, 魏智磊, 史忠旗. 连接温度对W/Ni/Kovar真空扩散连接接头界面结构及结合强度的影响[J]. 材料导报, 2024, 38(4): 22090302-6.
[2] 朱凯涛, 董多, 杨晓红, 朱冬冬, 王晓红, 马腾飞. GH4169/BNi-7钎焊接头的显微组织、力学性能和腐蚀行为[J]. 材料导报, 2024, 38(24): 23100078-8.
[3] 陈徐东, 冯璐, 张锦华, 刘志恒, 董文, 温荣鲲. 不同密度泡沫混凝土梁断裂特性及数值模拟[J]. 材料导报, 2022, 36(4): 20090086-7.
[4] 蔡雨晨, 冯可芹, 周博芳, 陈思潭. Nb对Zr基钎料及钎焊连接SiC陶瓷的影响[J]. 材料导报, 2022, 36(3): 20090283-5.
[5] 王晓昱, 贾建刚, 刘第强, 巨佳康, 柴昌盛, 季根顺. 基于Si-CaO/Al2O3-Si三明治结构的碳/碳复合材料高强度扩散连接[J]. 材料导报, 2022, 36(13): 21040028-6.
[6] 金贺荣, 张钊瑞, 韩民峰, 井士涛, 赵丁选. 表面粗糙度对热轧不锈钢复合板界面质量的影响[J]. 材料导报, 2021, 35(8): 8151-8156.
[7] 赵思钰, 温卫东, 周喻. 基于三胞模型的2.5D编织复合材料力学性能研究[J]. 材料导报, 2021, 35(22): 22178-22192.
[8] 曹忠亮, 郭登科, 林国军, 韩振宇, 富宏亚. 热塑性纤维铺放构件的层间剪切强度及孔隙率[J]. 材料导报, 2021, 35(18): 18205-18209.
[9] 张松, 杨静, 胥永刚, 张明月. 仿SIMA法钎焊对Mn-Cu合金与430不锈钢接头组织及性能的影响[J]. 材料导报, 2020, 34(8): 8126-8130.
[10] 秦翔, 杨军, 邹德宁, 谢燕翔. 选区激光熔化线能量对Inconel718涂层组织结构及性能的影响[J]. 材料导报, 2020, 34(4): 4093-4097.
[11] 成烨, 还大军, 李勇, 刘洪全, 周洲. AS4D/PEEK热塑性复合材料激光固结缠绕工艺参数优化[J]. 材料导报, 2020, 34(22): 22190-22194.
[12] 肖丰强, 王东坡, 胡文彬, 崔雷, 高志明, 周兰聚. 终轧温度对2205/Q235B双相不锈钢复合板组织和性能的影响[J]. 材料导报, 2020, 34(16): 16119-16124.
[13] 梁双强, 陈革, 周其洪, FrankKo. 含缺陷三维编织复合材料拉伸性能试验[J]. 材料导报, 2020, 34(14): 14209-14213.
[14] 钟汝能, 郑勤红, 向泰, 姚斌. 颗粒填充二元复合材料等效介电特性的修正通用有效介质计算公式[J]. 材料导报, 2018, 32(24): 4258-4263.
[15] 万永强,胡小武,徐涛,李玉龙,江雄心. Cu/Sn37Pb/Cu钎焊接头界面微观结构及其剪切性能[J]. 《材料导报》期刊社, 2018, 32(12): 2003-2007.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed