Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (6): 98-104    https://doi.org/10.11896/j.issn.1005-023X.2017.06.020
  材料研究 |
正火工艺对冷轧态低合金低温钢组织及拉伸性能的影响
周双双1, 刘希琴1, 刘子利1, 侯志国1, 田青超2
1 南京航空航天大学材料科学与技术学院, 南京 210016;
2 宝山钢铁股份有限公司, 上海 201900
Effect of Normalizing Process on Microstructure Evolution and Tensile
Properties of Cold-rolled Low-alloy Cryogenic Steel
ZHOU Shuangshuang1, LIU Xiqin1, LIU Zili1, HOU Zhiguo1, TIAN Qingchao2
1 College of Materials Science and Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016;

2 Baoshan Iron &
Steel Co, Ltd, Shanghai 201900
下载:  全 文 ( PDF ) ( 2447KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用拉伸性能、显微硬度测试及OM、SEM、TEM等实验方法研究了正火工艺对冷轧态低合金低温钢板组织演变和拉伸性能的影响。结果表明,热处理温度为700 ℃时,冷轧试样仅处于回复阶段,铁素体基体内为严重的位错缠结组态和位错网格结构;正火温度升高至750 ℃和800 ℃时,冷轧组织再结晶及相变过程同时发生,以M/A小岛为特征的粒状组织出现;860 ℃完全正火组织为等轴铁素体和弥散珠光体,位错呈稀疏的位错墙组态。23%压下率冷轧试样经860 ℃正火后铁素体晶粒尺寸由10%压下率冷轧试样的12.0 μm细化到10.2 μm。正火温度为860 ℃时,冷轧试样达到最佳的强塑性配合,10%和23%压下率试样的强塑积分别为20 007 MPa%、17 850 MPa%。与700 ℃正火试样相比,860 ℃正火试样拉伸断口附近及颈缩区组织中微孔数量显著降低,拉伸变形能力改善。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
周双双
刘希琴
刘子利
侯志国
田青超
关键词:  低合金低温钢  冷轧  正火工艺  组织演变  拉伸变形    
Abstract: The effect of normalizing process on evolution of microstructures and tensile properties of cold-rolled low-alloy cryogenic steel plate was investigated by tensile test, microhardness test, OM, SEM and TEM. The results showed that the cold-rolled samples were in recovery when the heat treatment temperature was 700 ℃,and the dislocations in ferrite matrix featured severe tangles configuration or grid structure. As the normalizing temperature increased to 750 ℃ and 800 ℃, recrystallization and phase transformation processes occurred simultaneously, and formed granular structure characterized by M/A islands. The microstructure of 860 ℃ normalized sample was composed of equiaxed ferrite and dispersed pearlite, and dislocations were sparse dislocation wall configuration. The ferrite grain size of cold-rolled sample with 23% reduction rate after 860 ℃ normalizing was refined to 10.2 μm, while that of cold-rolled sample with 10% reduction rate was 12.0 μm. The optimal combination of strength and ductility was obtained at the normalizing temperature of 860 ℃, and the product of strength and ductility were 20 007 MPa% and 17 850 MPa% for the cold-rolled samples with 10% and 23% reduction rate, respectively. Compared with that of 700 ℃ normalized sample, the number of microvoids near tensile fracture and necking zone in 860 ℃ normalized sample reduced significantly, indicating the improvement of tensile deformation ability.
Key words:  low-alloy cryogenic steel    cold rolling    normalizing process    microstructure evolution    tensile deformation
出版日期:  2017-03-25      发布日期:  2018-05-02
ZTFLH:  TG142.1  
基金资助: 江苏省产学研联合创新资金前瞻性研究项目(BY2014003-06);江苏高校优势学科建设工程资助项目;苏州市工业技术创新专项(SGC201539);常熟市科技计划项目(CG201404)
通讯作者:  刘希琴:女,1968年生,副教授,主要研究方向为金属材料的精密成型技术,E-mail:liuxiqin@nuaa.edu.cn   
作者简介:  周双双:女,1990年生,硕士研究生,主要研究方向为金属热处理及金属材料的精密成型技术
引用本文:    
周双双, 刘希琴, 刘子利, 侯志国, 田青超. 正火工艺对冷轧态低合金低温钢组织及拉伸性能的影响[J]. 《材料导报》期刊社, 2017, 31(6): 98-104.
ZHOU Shuangshuang, LIU Xiqin, LIU Zili, HOU Zhiguo, TIAN Qingchao. Effect of Normalizing Process on Microstructure Evolution and Tensile
Properties of Cold-rolled Low-alloy Cryogenic Steel. Materials Reports, 2017, 31(6): 98-104.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.06.020  或          https://www.mater-rep.com/CN/Y2017/V31/I6/98
1 Yi H L, Du L X, Wang G D, et al. Development of Nb-V-Ti hot-rolled high strength steel with fine ferrite and precipitation streng-thening[J]. J Iron Steel Res Int,2009,16(4):72.
2 Show B K, Veerababu R, Balamuralikrishnan R, et al. Effect of vanadium and titanium modification on the microstructure and mechanical properties of a microalloyed HSLA steel[J]. Mater Sci Eng A,2010,527(6):1595.
3 Zhao Z Z, Jin G C, Feng N, et al. Microstructure evolution and mechanical properties of 1 000 MPa cold rolled dual-phase steel[J]. Trans Nonferr Met Soc China,2009,19:s563.
4 Rocha R O, Melo T M F, Pereloma E V, et al. Microstructural evolution at the initial stages of continuous annealing of cold rolled dual-phase steel[J]. Mater Sci Eng A,2005,391(1):296.
5 Yang K, Gou H, Zhang B, et al. Microstructures and fracture features of cold-rolled low carbon steel sheet after annealing and mechanical stress concurrently loaded[J]. Mater Sci Eng A,2009,502(1):126.
6 Estay, Li C J, Purdy G R. Carbide dissolution and austenite growth in the intercritical annealing of Fe-C-Mn dual phase steels[J]. Can Metall Q,1984,23(1):121.
7 Chen J, Shen X J, Ji F Q, et al. Effect of annealing time on microstructure and mechanical properties of cold-rolled niobium and titanium bearing micro-alloyed steel strips[J]. J Iron Steel Res Int,2013,20(9):86.
8 Bo M A, Yan P, Bin J I A, et al. Static recrystallization kinetics model after hot deformation of low-alloy steel Q345B[J]. J Iron Steel Res Int,2010,17(8):61.
9 Li Z, Wang T S, Zhang X J, et al. Annealing softening behaviour of cold-rolled low-carbon steel with a dual-phase structure and the resulting tensile properties[J]. Mater Sci Eng A,2012,552:204.
10 Wang L M,Yang H, Wu J F, et al. Effect of heat-treatment on the micro-structure and drawing performance of the medium carbon steel wine[J]. Mater Rev,2011,25(S1):523(in Chinese).
王利明, 杨恒, 吴建峰, 等. 热处理工艺对中碳钢丝显微组织及其拉拔性能的影响[J]. 材料导报,2011,25(专辑Ⅻ):523.
11 Belyakov A, Wei F G, Tsuzaki K, et al. Incomplete recrystallization in cold worked steel containing TiC[J]. Mater Sci Eng A,2007,471(1):50.
12 Rollett A, Humphreys F J, Rohrer G S, et al. Recrystallization and related annealing phenomena[M]. NL:Elsevier,2004.
13 Shen B, Chen P L, Zhang H H, et al. Effect of normalizing process on banded structure in thick high strength ship plate [J]. Heat Treat,2012,27(2):19(in Chinese).
沈斌, 陈佩丽, 张恒华, 等. 正火工艺对高强度厚船板钢带状组织的影响[J]. 热处理,2012,27(2):19.
14 Vandeputte S, Vanderschhuern D, Claessens S, et al. Modern steel grades covering all needs of the automotive industry[C]//9th International Conference on Steel Sheet Metal. Leuven, Belgium,2001:405.
15 Najafi H, Rassizadehghani J, Asgari S. As-cast mechanical properties of vanadium/niobium microalloyed steels[J]. Mater Sci Eng A,2008,486(1):1.
16 Maropoulos S, Ridley N. Inclusions and fracture characteristics of HSLA steel forgings[J]. Mater Sci Eng A,2004,384(1):64.
17 Orown E. Symposium on internal stresses in metals and alloys[M].London: Institute of Metals,1948:451.
18 Luo Y, Peng J, Wang H, et al. Effect of tempering on microstructure and mechanical properties of a non-quenched bainitic steel[J]. Mater Sci Eng A,2010,527(15):3433.
19 Goods S H, Brown L M.Overview No. 1: The nucleation of cavities by plastic deformation[J]. Acta Metall,1979,27(1):1.
20 Humphreys F J. A unified theory of recovery, recrystallization and grain growth, based on the stability and growth of cellular microstructures-I. The basic model[J]. Acta Mater,1997,45(10):4231.
21 Ma J, Zhang X Y, Cheng S X, et al. Influence of partitioning temperature on microstructure and mechanical properties of (B+M/A) X80 high deformability pipeline steel[J]. Mater Rev: Res,2014,28(11):96(in Chinese).
马晶, 张骁勇, 程时遐, 等. 配分温度对 (B+ M/A) X80 大变形管线钢组织和性能的影响[J]. 材料导报:研究篇,2014,28(11):96.
22 Zhou Y, Jia T, Zhang X, et al. Investigation on tempering of granular bainite in an offshore platform steel[J]. Mater Sci Eng A,2015,626:352.
23 Zhou Y L, Xu Y, Chen J, et al. Experimental study of the impact fracture behavior of FH550 offshore platform steel [J]. Acta Metall Sin,2011,47(11):1382(in Chinese).
周砚磊, 徐洋, 陈俊, 等. FH550级海洋平台用钢冲击断裂行为实验研究[J]. 金属学报,2011,47(11):1382.
24 Lajtai E Z. A theoretical and experimental evaluation of the Griffith theory of brittle fracture[J]. Tectonophysics,1971,11(2):129.
25 Chen J, Tang S, Liu Z Y, et al. Microstructural characteristics with various cooling paths and the mechanism of embrittlement and toughening in low-carbon high performance bridge steel[J]. Mater Sci Eng A,2013,559:241.
26 Davis C L, King J E. Cleavage initiation in the intercritically reheated coarse-grained heat-affected zone: Part I. Fractographic evidence[J]. Metall Mater Trans A,1994,25(3):563.
27 Tang D, Dai H, Sun J Q, et al. Research of asymmetrical cold rol-ling and recrystallization annealing experiment of flange plate steel [J]. J Mater Eng,2011(5):81(in Chinese).
唐荻, 戴辉, 孙蓟泉,等. 翼缘板钢非对称冷轧及再结晶退火实验研究[J]. 材料工程,2011(5):81.
[1] 王子健, 孙舒蕾, 肖寒, 冉旭东, 陈强, 黄树海, 赵耀邦, 周利, 黄永宪. 搅拌摩擦固相沉积增材制造研究现状[J]. 材料导报, 2024, 38(9): 22100039-16.
[2] 叶拓, 邱飒蔚, 夏二立, 郭鹏程, 吴远志, 李落星. 动态冲击载荷下7003铝合金的力学响应行为及力学本构建模[J]. 材料导报, 2024, 38(13): 24010026-8.
[3] 朱艳春, 邵珠彩, 罗媛媛, 黄志权, 牛勇, 秦建平. Ti2AlNb合金应变速率敏感指数和应变硬化指数与变形参数和晶粒尺寸关系研究[J]. 材料导报, 2023, 37(5): 21070259-6.
[4] 孙彬, 高圣伦, 郝明欣, 曹光明, 李志峰. 小压下冷轧对热轧带钢氧化铁皮氢气还原动力学的影响[J]. 材料导报, 2023, 37(4): 21090067-6.
[5] 罗翔, 米振莉, 吴彦欣, 杨永刚, 江海涛, 胡宽辉. 退火温度对LH800空冷强化钢组织与力学性能的影响[J]. 材料导报, 2023, 37(3): 21080047-6.
[6] 张志强, 楚昊然, 张天刚, 路学成, 张宇航, 郭志永. UNS S32750双相不锈钢焊接热影响区微观组织演变[J]. 材料导报, 2023, 37(21): 22050291-7.
[7] 王帅, 郭二军, 冯义成, 付金来, 马宝霞, 赵思聪, 王雷. 冷轧变形对Al-Cu-Mg合金的显微组织与力学性能的影响[J]. 材料导报, 2023, 37(11): 21120197-7.
[8] 李朝阳, 黄光杰, 曹玲飞, 曹宇, 林林. 升温速率对AA2060铝锂合金中间形变热处理微观组织的影响[J]. 材料导报, 2022, 36(7): 21020008-7.
[9] 孙伟, 张淑婷, 杜开平, 欧阳佩旋, 杨谨赫. 基于有限元法冶金冷轧辊表面替代电镀铬涂层的设计与研究[J]. 材料导报, 2022, 36(7): 21060140-6.
[10] 贾红敏, 常剑秀. 定向凝固镁合金的研究进展及应用前景[J]. 材料导报, 2022, 36(6): 20060149-7.
[11] 吴敏, 刘健, 罗霞, 刘允中, 蔡仁烨, 徐伟, 陈晓. Al-Cu-Mg合金粉末在半固态的组织演变及晶粒粗化机制[J]. 材料导报, 2022, 36(24): 22030231-7.
[12] 杨文涛, 何鹏飞, 刘明, 周永欣, 王海斗, 白宇, 李青. 热处理工艺对铝硅合金显微组织和性能影响的研究现状[J]. 材料导报, 2022, 36(11): 20080038-9.
[13] 袁傲明, 任学平. 固溶时效对1Cr21Ni5Ti双相不锈钢组织的影响[J]. 材料导报, 2021, 35(Z1): 443-446.
[14] 刘伟, 吴远志, 邓彬, 刘安民, 刘巍, 孙乾, 叶拓. 时效工艺对6061铝合金力学性能各向异性的影响及微观组织研究[J]. 材料导报, 2021, 35(4): 4134-4138.
[15] 王永金, 张应超, 宋仁伯. 梯度结构半固态9Cr18不锈钢的制备与显微组织演变[J]. 材料导报, 2021, 35(2): 2120-2124.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed