Please wait a minute...
材料导报编辑部  2017, Vol. 31 Issue (22): 125-129    https://doi.org/10.11896/j.issn.1005-023X.2017.022.025
  材料研究 |
CNT-CF水泥基材料传感特性研究*
左俊卿1,2,周虹1,2,姚武3,吴德龙1,2,刘小艳4,张玉梅4
1 上海建工集团股份有限公司,上海 200080;
2 上海高大结构高性能混凝土工程技术研究中心,上海 201114;
3 同济大学先进土木工程材料教育部重点实验室,上海 201804;
4 河海大学力学与材料学院,南京210098
Research on the Sensing Properties of CNT-CF/Cement-based Materials
ZUO Junqing1,2, ZHOU Hong1,2, YAO Wu3, WU Delong1,2, LIU Xiaoyan4, ZHANG Yumei4
1 Shanghai Construction Group Co., Ltd., Shanghai 200080;
2 Shanghai Engineering Research Center of Mega Structure High Performance Concrete, Shanghai 201114;
3 Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education, Tongji University, Shanghai 201804;
4 College of Mechanics and Materials, Hohai University, Nanjing 210098
下载:  全 文 ( PDF ) ( 594KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 将碳纳米管与碳纤维混杂掺入水泥基材料制备碳纳米管-碳纤维(CNT-CF)水泥基材料,并研究其温敏和压敏传感特性。结果表明,当碳纳米管掺量较低时(<0.5%),碳纳米管能有效提高CNT-CF水泥基材料的温敏和压敏特性;CNT-CF水泥基材料的活化能、温敏系数以及压敏传感线性程度和重复度均随碳纳米管掺量增加而提高;随着碳纳米管掺量继续增加,CNT-CF水泥基材料各项传感性能均有所下降。碳纳米管掺量为0.5%的试样传感特性最优。利用CNT-CF水泥基材料开发水泥基温敏、压敏传感器有一定应用前景。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
左俊卿
周虹
姚武
吴德龙
刘小艳
张玉梅
关键词:  CNT-CF/水泥基材料  传感特性  温敏  压敏    
Abstract: Carbon nanotubes (CNTs) and carbon fibers (CFs) were incorporated into cement based materials to fabricate CNT-CF/cement-based materials. The temperature-sensitivity and pressure-sensitivity of CNT-CF/cement-based materials were studied. Results show that when content of CNTs is low (<0.5%), CNTs can effectively improve the temperature and pressure sensitive properties of CNT-CF/cement-based materials. The activation energy, temperature sensitivity coefficient, the linearity degree and repeatability rate of pressure-sensitivity increase as the CNT content increases. As the CNT content continue to increase, sensing properties of CNT-CF/cement-based materials decline. Specimen containing 0.5% (mass fraction) CNTs exhibits the optimal sensing properties. Using CNT-CF/cement-based materials to develop cement-based temperature sensor and pressure sensor has a certain application prospect.
Key words:  CNT-CF/cement based materials,sensing properties,temperature-sensitivity    pressure-sensitivity
发布日期:  2018-05-08
ZTFLH:  TU528.0  
基金资助: *国家自然科学基金(51508320);上海市青年科技启明星计划资助项目(16QB1402000);上海市国资委企业技术创新和能级提升项目(2014011)
作者简介:  左俊卿:男,1984年生,博士,高级工程师,研究方向为高强高性能混凝土及土木工程结构耐久性E-mail:junqingzuo@163.com
引用本文:    
左俊卿,周虹,姚武,吴德龙,刘小艳,张玉梅. CNT-CF水泥基材料传感特性研究*[J]. 材料导报编辑部, 2017, 31(22): 125-129.
ZUO Junqing, ZHOU Hong, YAO Wu, WU Delong, LIU Xiaoyan, ZHANG Yumei. Research on the Sensing Properties of CNT-CF/Cement-based Materials. Materials Reports, 2017, 31(22): 125-129.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.022.025  或          https://www.mater-rep.com/CN/Y2017/V31/I22/125
1 Kalashnyk N, Faulquesc E, Schj?dt-Thomsena J, et al. Monitoring self-sensing damage of multiple carbon fiber composites using piezoresistivity[J]. Synthetic Met, 2017,224:56.
2 Pisello A, D’Alessandroc A, Sara Sambucoa S. Multipurpose experimental characterization of smart nanocomposite cement-based materials for thermal-energy efficiency and strain-sensing capability[J]. Sol Energ Mat Sol C, 2017,161:77.
3 Zuo J, Yao W, Wu K. Seebeck effect and mechanical properties of carbon nanotube-carbon fiber/cement nanocomposites[J]. Fuller Nanotub Car N, 2015,23(5):383.
4 Wen S, Wang S, Chung D D L. Carbon fiber structural composites as thermistors[J]. Sensor Actuat A-Phys, 1999,78(2-3):180.
5 Chung D D L. Cement-matrix composites for thermal engineering[J]. Appl Therm Eng, 2001,21(16):1607.
6 Yao W, Wang T. Resistivity-temperature effect and testing methods for carbon fiber reinforced cement-based composites[J]. J Tongji University (Nat Sci Ed), 2007,35(4):511(in Chinese).
姚武,王婷婷. 碳纤维水泥基材料的温阻效应及其测试方法[J]. 同济大学学报(自然科学版), 2007,35(4):511.
7 Han B, Ding S, Yu X. Intrinsic self-sensing concrete and structures: A review[J]. Measurement, 2015,59:110.
8 Zuo J, Yao W, Liu X, et al. Sensing properties of carbon nanotube-carbon fiber/cement nanocomposites[J]. J Test Eval, 2012,40(5):838.
9 Materazzi A, Ubertini F, D’Alessandro A. Carbon nanotube cement-based transducers for dynamic sensing of strain[J]. Cement Concrete Comp, 2013,37:2.
10 Danoglidis P, Konsta-Gdoutos M, Gdoutos E, et al. Strength, energy absorption capability and self-sensing properties of multifunctional carbon nanotube reinforced mortars[J]. Constr Build Mater, 2016,120:265.
11 Yao W, Zuo Junqing, Wu Keru. Microstructure and thermoelectric properties of carbon nanotube-carbon fiber/cement composites[J]. J Funct Mater, 2013,44(13):1521(in Chinese).
姚武,左俊卿,吴科如. 碳纳米管-碳纤维/水泥基材料微观结构和热电性能[J]. 功能材料, 2013,44(13):1521.
12 Hai R, Bian Y, Wu K. Thermal conduction coefficient of carbon fiber reinforced cement-based composite material[J].Concrete, 2009(7):55(in Chinese).
海然,边亚东,吴科如. 碳纤维水泥基复合材料导热系数的研究[J]. 混凝土, 2009(7):55.
13 Sun M, Li Z. Thermoelectric percolation phenomena in carbon fiber-reinforced concrete[J]. Cement Concrete Res, 1998,28(12):1707.
14 Dresselhaus M, Chen G, Tang M, et al. New directions for low-dimensional thermoelectric materials[J]. Adv Mater, 2007,19(8):1043.
15 Chen B, Wu K, Yao W. Piezoresistivity in carbon fiber reinforced cement based composites[J]. J Mater Sci Technol, 2004,20(6):746.
16 Han B, Ou J. Embedded piezoresistive cement-based stress/strain sensor[J]. Sensor Actuat A-Phys, 2007,138(2):294.
[1] 孙斐, 赵洪峰, 缪奎. 钆掺杂的高非线性和低漏流SnO2基压敏电阻材料[J]. 材料导报, 2025, 39(2): 23110256-4.
[2] 马彬, 黄启钦, 肖薇薇, 黄小林. 钢渣-偏高岭土基导电地聚合物的压敏性能研究[J]. 材料导报, 2024, 38(6): 22040039-6.
[3] 刘金涛, 崔娇伟, 周煜, 钱如胜, 孔德玉. 三维石墨烯-碳纳米管对超高性能混凝土机敏性能的影响[J]. 材料导报, 2024, 38(11): 23010135-8.
[4] 刘会茹, 张苗苗, 徐智策. 离子液体凝胶催化剂在合成乙酸正龙脑酯中的应用[J]. 材料导报, 2024, 38(11): 23080135-7.
[5] 宋亚娇, 于佳, 吴伟斌, 于洪翠, 刘景林. 稀土钇对Eu(TTA)3phen/PMMA温敏特性的影响[J]. 材料导报, 2023, 37(20): 22040012-5.
[6] 何贤会, 杨培昕, 卢小鸾, 汤陆扬, 付阳洋, 彭黔荣, 杨敏. 用于阴道黏膜给药的纳米胶束复合温敏水凝胶的制备及性能评价[J]. 材料导报, 2023, 37(19): 22040117-7.
[7] 方思怡, 巴明芳, 许浩锋, 张晨剑, 谢嘉磊, 王志豪. HEC分散剂和纤维掺量对短切碳纤维水泥基材料压敏性的影响[J]. 材料导报, 2023, 37(15): 22020152-9.
[8] 宋欢欢, 赵鸣, 崔文正, 刘卓承, 陈华, 杜永胜. SnO2对低温烧结ZnBiMnNbO基高压压敏陶瓷的影响[J]. 材料导报, 2022, 36(17): 21030033-5.
[9] 刘通, 诸葛祥群, 蓝嘉昕, 耿继业, 罗志虹, 李义兵, 罗鲲. 聚氨酯基压敏材料3D打印结合GaInSn液态金属导线制作柔性压力传感器的研究[J]. 材料导报, 2022, 36(15): 21030297-5.
[10] 赵中国, 贾旭妙, 程少华, 王渺, 梁攀旭, 李万顺, 贾仕奎. 聚丙烯/碳纳米管复合材料的结晶性能以及外场响应行为[J]. 材料导报, 2021, 35(8): 8191-8195.
[11] 李廷廷, 刘锦春. 硬段含量对聚酯型温敏聚氨酯弹性体性能的影响[J]. 材料导报, 2021, 35(2): 2161-2165.
[12] 王毓, 赵君, 任俊鹏, 李本秀, 周进康, 李小平. 温敏互穿网络水凝胶/改性膨润土复合吸水保水材料的制备及表征[J]. 材料导报, 2020, 34(12): 12178-12184.
[13] 陈永佳, 刘建科. SiO2掺杂浓度对ZnO压敏陶瓷结构与性能的影响[J]. 材料导报, 2019, 33(z1): 161-164.
[14] 高欣, 韩全青, 张恒, 陈克利. 纤维素羧酸钠基半互穿高吸水凝胶的温控溶胀效果[J]. 材料导报, 2019, 33(8): 1416-1421.
[15] 刘德乡, 刘武, 叶志会, 吴志平. 生物质基温敏智能材料的研究进展[J]. 材料导报, 2019, 33(19): 3336-3346.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed