Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (20): 135-139    https://doi.org/10.11896/j.issn.1005-023X.2017.020.028
  计算模拟 |
高密度聚乙烯材料在大变形条件下的数值模拟研究*
陈自鹏1,2, 石少卿1,2, 罗伟铭1, 孙建虎1, 范兰心3
1 后勤工程学院军事土木工程系,重庆 401311;
2 重庆市地质灾害防治工程技术研究中心,重庆 401311;
3 湖南大学土木工程学院,长沙 410082
Research on Finite Element Simulation of the High-density Polyethylene Under Large Deformation
CHEN Zipeng1,2, SHI Shaoqing1,2, LUO Weiming1, SUN Jianhu1, FAN Lanxin3
1 Department of Civil Engineering, Logistical Engineering University, Chongqing 401311;
2 Chongqing Engineering Technology Research Center for Geological Disaster Prevention and Control, Chongqing 401311;
3 College of Civil Engineering, Hunan University, Changsha 410082
下载:  全 文 ( PDF ) ( 1737KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 针对高密度聚乙烯(HDPE)在大变形条件下有限元模型不易收敛、本构关系较为复杂的问题,对HDPE片材进行了单轴拉伸试验和数值模拟研究。通过对比试验结果和模型计算结果发现:非线性粘弹性本构模型与小变形条件下HDPE的单轴拉伸试验结果较为吻合,但与大变形条件下的试验结果相差较大;而Kwon模型的计算结果与大变形和小变形条件下的试验结果均较为吻合。同时,对Kwon模型的参数选择进行了优化,得到了100 mm/min和150 mm/min拉伸速率下的优化参数,对大变形下片材的数值模拟具有较好的参考价值。此外,通过对条带单元的应力应变分析,可知HDPE条带在单轴拉伸下的应力应变呈不均匀分布,中心点区域是片材最大应力应变的集中点,这也解释了HDPE条带断裂多出现在中心区域的原因。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈自鹏
石少卿
罗伟铭
孙建虎
范兰心
关键词:  本构方程  有限元模型  高密度聚乙烯  单轴拉伸试验    
Abstract: In order to figure out the problems that FEM of HDPE is not easily stable with convergence and its constitutive model is relatively sophisticated, this paper conducted uniaxial tensile test and FEM to analyze the HDPE sheet. By comparing the results of tensile experiment and finite element simulation, it can be inferred that the non-linear Maxwell model was suitable for the situation under small deformation, but under large tensile deformation, the results of Maxwell model were quite different from expe-riments. However, the calculated results of Kwon model were consistent with experiment under both small tensile deformation and large deformation. Meanwhile, this paper also optimized the parameters of Kwon model. With the optimized parameters under 100 mm/min and 150 mm/min stretching rates, reference value could be reflected for the FEM of HDPE sheet under large deformation. Besides, analysis about the stress and strain in the sheet element indicated that the HDPE was under uniaxial tension, the stress and strain were not evenly distributed.The max stress and max strain located in the central area, which also explained the phenomenon that the sheet always broke in the middle.
Key words:  constitutive model    finite element model    high density polyethylene    uniaxial tensile test
出版日期:  2017-10-25      发布日期:  2018-05-05
ZTFLH:  TQ325.1+2  
基金资助: *全军后勤科研计划项目(BY211C015)
作者简介:  陈自鹏:1992年生,硕士,主要从事新型材料抗冲击、抗爆炸研究 石少卿:通讯作者,男,教授,博士研究生导师,主要从事防护工程研究 E-mail:ssq601@163.com
引用本文:    
陈自鹏, 石少卿, 罗伟铭, 孙建虎, 范兰心. 高密度聚乙烯材料在大变形条件下的数值模拟研究*[J]. 《材料导报》期刊社, 2017, 31(20): 135-139.
CHEN Zipeng, SHI Shaoqing, LUO Weiming, SUN Jianhu, FAN Lanxin. Research on Finite Element Simulation of the High-density Polyethylene Under Large Deformation. Materials Reports, 2017, 31(20): 135-139.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.020.028  或          https://www.mater-rep.com/CN/Y2017/V31/I20/135
1 He Dengfeng, Xu Jie, Guan Chao, et al. Synthesis of disentangled ultra-high molecular weight polyethylene and its application to enhancing the properties of linear low-density polyethylene[J]. Mater Rev:Res, 2016,30(2):47(in Chinese).
贺登峰, 徐杰, 关超,等. 低缠结超高分子量聚乙烯的制备及其对线性低密度聚乙烯的增强作用[J]. 材料导报:研究篇, 2016,30(2):47.
2 Zhang Keshi, Zhang Guang, Yu Haidong. Orthogonal anisotropic elastic-plastic finite deformation finite element method[J]. Acta Armamentarii, 2000,21(s1):6(in Chinese).
张克实, 张光, 余海东. 正交各向异性弹塑性有限变形的有限元计算方法[J]. 兵工学报, 2000,21(s1):6.
3 Li Junwei, Huang Hongwei. Strain rate dependent tensile behavior of HDPE geocell strip[J]. J Building Mater, 2008,11(1):47(in Chinese).
李俊伟,黄宏伟.土工格室HDPE片材拉伸应变率相关特性[J].建筑材料学报,2008,11(1):47.
4 Chen Jiankang, Huang Zhuping, Chu Haijian, et al. Under the condition of uniaxial stress relaxation time rate related to the nonlinear viscoelastic constitutive model[J]. Acta Polym Sin, 2003(3):414(in Chinese).
陈建康, 黄筑平, 楚海建,等. 单向应力条件下松弛时间率相关的非线性粘弹性本构模型[J]. 高分子学报, 2003(3):414.
5 Haward R N, Thackray G. The use of a mathematical model to describe isothermal stress-strain curves in glassy thermoplastics[J]. Proceed Royal Soc A, 1968,302(1471):453.
6 Argon A S. Physical basis of distortional and dilational plastic flow in glassy polymers[J]. J Macromolecular Sci B, 1973(3-4):573.
7 Hutchinson J W, Neale K W. Neck propagation[J]. J Mechan Phys Solids, 1983,31(5):405.
8 Kwon H J, Jar P Y B. Application of essential work of fracture concept to toughness characterization of high-density polyethylene[J]. Polym Eng Sci, 2007,47(9):1327.
9 Zhang Y, Jar P Y B. Phenomenological modelling of tensile fracture in PE pipe by considering damage evolution[J]. Mater Des, 2015,77:72.
10中国国家标准化管理委员会. GB/T 1040.3-2006 塑料 拉伸性能的测定 第3部分:薄膜和薄片的试验条件[S]. 2006.
11Khedri S, Elyasi S. Kinetic analysis for thermal cracking of HDPE: A new isoconversional approach[J]. Polym Degrad Stab, 2016,129:306.
12Shi S, Zhang X, Liu Y, et al. Application of rigid polyurethane foam in military engineering[J]. Eng Plastics Application, 2004,32(8):36(in Chinese).13石少卿, 张湘冀, 刘颖芳,等. 硬质聚氨酯泡沫塑料在军事工程中的应用[J]. 工程塑料应用, 2004,32(8):36.
13Na S, Spatari S, Hsuan Y G. Fracture characterization of pristine/post-consumer HDPE blends using the essential work of fracture (EWF) concept and extended finite element method (XFEM)[J]. Eng Fracture Mechan, 2015,139:1.
14Kwon H J, Jar P Y B. On the application of FEM to deformation of high-density polyethylene[J]. Int J Solids Structures, 2008,45(45):3521.
15Kumar B R, Doddamani M, Zeltmann S E, et al. Data characterizing tensile behavior of cenosphere/HDPE syntactic foam[J]. Data Brief, 2016,6:933.
16Zhang M, Yuan M N, Xiang F H, et al. Numerical simulation of anti-penetration performance on Kevlar-129 fiber reinforced compo-site materials[J]. Mater Rev:Res, 2015,29(12):117(in Chinese).
张明,原梅妮,向丰华,等.Kevlar-129纤维复合材料抗侵彻性能数值模拟[J].材料导报:研究篇,2015,29(12):117.
17Bhning M, Niebergall U, Zanotto M, et al. Impact of biodiesel sorption on tensile properties of PE-HD for container applications[J]. Polym Testing, 2016,50:315.
[1] 赵言, 唐建国, 张勇, 郑许, 赵辉. 应变速率对7065铝合金等温压缩软化机制的影响[J]. 材料导报, 2024, 38(8): 22080187-6.
[2] 孙文明, 李韶林, 宋克兴, 王强松, 丁宗业, 朱莹莹. 铸态Cu-1.16Ni-0.36Cr合金热变形行为及热加工图[J]. 材料导报, 2024, 38(2): 22040205-8.
[3] 王帆, 王西涛, 徐世光, 何金珊. 基于反向传播神经网络预测7Mo 超级奥氏体不锈钢的热变形行为[J]. 材料导报, 2024, 38(17): 23060023-7.
[4] 栾利强, 文双寿, 余和德, 任俊颖. 碳纳米管改性沥青混合料低温裂缝扩展分析[J]. 材料导报, 2023, 37(20): 22030145-7.
[5] 宫兴, 英红, 梁凤芯, 刘卫东, 许修权. 降低沥青路面温度的双向热诱导相变结构研究[J]. 材料导报, 2023, 37(13): 21040242-6.
[6] 陈刚, 姚远超, 贾寓真, 苏斌, 刘国跃, 曾斌. 30Cr4MoNiV超高强度钢热变形本构方程的构建与优化[J]. 材料导报, 2022, 36(21): 21010158-7.
[7] 梅金娜, 薛飞, 吴天栋, 卫娜, 蔡振. FeCrNiMn高熵合金本构方程的建立[J]. 材料导报, 2021, 35(Z1): 336-341.
[8] 金贺荣, 张钊瑞, 韩民峰, 井士涛, 赵丁选. 表面粗糙度对热轧不锈钢复合板界面质量的影响[J]. 材料导报, 2021, 35(8): 8151-8156.
[9] 吕斌, 李志强, 杨智勇, 刘小龙, 李卫京, 韩建民. 电渣重熔工艺对GCr15轴承钢凝固组织的影响[J]. 材料导报, 2021, 35(24): 24134-24141.
[10] 苏粤兰, 罗兵辉, 柏振海, 莫文锋, 何川. Al-Mg-Si-In合金的热变形行为和热轧工艺[J]. 材料导报, 2021, 35(20): 20137-20142.
[11] 易宗鑫, 李小强, 潘存良, 沈正章. 等轴细晶TC4钛合金应变补偿本构关系及热加工图的研究[J]. 材料导报, 2021, 35(18): 18146-18152.
[12] 何春雨, 余伟, 程知松, 王铭阳, 唐荻. 高强耐蚀车体用钢热变形行为及本构方程的研究[J]. 材料导报, 2021, 35(18): 18153-18162.
[13] 任军帅, 李欣琳, 肖松涛, 周立鹏, 舒滢, 张英明. 新型Ti-Al-Zr-Nb-Mo-Si钛合金热变形行为及基于BP神经网络模型的本构关系研究[J]. 材料导报, 2020, 34(Z1): 283-288.
[14] 仇鹏, 王家毅, 段晓鸽, 蔺宏涛, 陈康, 江海涛. AA7021铝合金热变形行为及微观组织演变机理的研究[J]. 材料导报, 2020, 34(8): 8106-8112.
[15] 吕鹏, 陈亚楠, 关庆丰, 李姚君, 许亮, 丁佐军. 新型超超临界机组用叶片钢11Cr12Ni3Mo2VN的热变形行为[J]. 材料导报, 2020, 34(4): 4113-4117.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed