Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (19): 35-42    https://doi.org/10.11896/j.issn.1005-023X.2017.019.005
  材料综述 |
碳量子点的生物应用:成像、载药与毒性*
闫鹏1, 艾凡荣1,2, 严喜鸾2, 刘东雷1
1 南昌大学机电工程学院,南昌 330031;
2 南昌大学转化医学研究院,南昌330088
Biological Applications of Carbon Quantum Dots:Bioimaging, Drug Delivery and Toxicity
YAN Peng1, AI Fanrong1,2, YAN Xiluan2, LIU Donglei1
1 School of Mechanic &Electronic Engineering,Nanchang University,Nanchang 330031;
2 Institute of Translational Medicine, Nanchang University, Nanchang 330088
下载:  全 文 ( PDF ) ( 3235KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 碳量子点作为一种新型的纳米材料,具有荧光性能优异、尺寸小、毒性低等诸多优势,因而具有良好的应用前景,尤其在生物医学领域有突出的应用价值,近年来引起了科研者们的广泛关注。在介绍碳量子点光学性质的基础上,重点综述了碳量子点在生物成像、诊疗剂应用及碳量子点生物毒性等方面的最新研究进展,并探讨了碳量子点未来的发展方向和前景。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
闫鹏
艾凡荣
严喜鸾
刘东雷
关键词:  碳量子点  生物医学  生物成像  诊疗剂  生物毒性    
Abstract: As a new type of nanomaterials, carbon quantum dots has attracted much attention in the past decade. With its advantages of excellent fluorescence properties, ultra-small size and low toxicity, carbon quantum dots show a promising application in various areas, especially in biomedicine. Based on an introduction about optical properties of carbon quantum dots this paper summarizes the, latest researches on carbon quantum dots for bioimaging and theranostic applications. The biotoxicity and future development prospects of carbon quantum dots are discussed as well.
Key words:  carbon quantum dots    biomedicine    bioimaging    theranostic    biotoxicity
出版日期:  2017-10-10      发布日期:  2018-05-07
ZTFLH:  TB321  
基金资助: *国家自然科学基金(51102131;81102289;31660491);江西省科技支撑计划项目(20151BBE50033);江西省自然科学基金(20142BAB216033;20132BAB205106)
作者简介:  闫鹏:男,1994年生,硕士研究生,主要从事纳米材料的研究 艾凡荣:通讯作者,男,1982年生,博士,副教授,主要从事生物材料及纳米材料的研究 E-mail:afr3755875@126.com
引用本文:    
闫鹏, 艾凡荣, 严喜鸾, 刘东雷. 碳量子点的生物应用:成像、载药与毒性*[J]. 《材料导报》期刊社, 2017, 31(19): 35-42.
YAN Peng, AI Fanrong, YAN Xiluan, LIU Donglei. Biological Applications of Carbon Quantum Dots:Bioimaging, Drug Delivery and Toxicity. Materials Reports, 2017, 31(19): 35-42.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.019.005  或          https://www.mater-rep.com/CN/Y2017/V31/I19/35
1 Che W Y, Liu C J, Yang K, et al. Research progress in preparation, property and applications of fluoresent carbon dots[J]. Acta Mater Compos Sin,2016,33(3):431(in Chinese).
车望远, 刘长军, 杨焜, 等. 荧光碳点的制备和性质及其应用研究进展[J]. 复合材料学报,2016,33(3):431.
2 Xu X, Ray R, Gu Y, et al. Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments[J]. J Am Chem Soc,2004,126(40):12736.
3 Wang W, Cheng L, Liu W G. Biological applications of carbon dots[J]. Sci China Chem,2014,57(4):522.
4 Zhou R Q, Lu H, Chen J H, et al. Synthesis, characterization and application of carbon quantum dots[J].Prog Pharmaceut Sci,2013,37(1):24(in Chinese).
周瑞琪, 吕华, 陈佳慧, 等. 碳量子点的合成, 表征及应用[J]. 药学进展,2013,37(1):24.
5 Tian R X. The surface groups regulation and properties research of carbon quantum dots[D]. Taiyuan: North University of China,2014(in Chinese).
田瑞雪. 碳量子点表面基团调控及性能的研究[D]. 太原: 中北大学,2014.
6 Zhang Y Q. Properties adjustment and applications of carbon quantum dots[D]. Wenzhou: Wenzhou University, 2013(in Chinese).
章燕清. 碳量子点的性能调控与应用[D]. 温州: 温州大学,2013.
7 Qiao Z A, Wang Y, Gao Y, et al. Commercially activated carbon as the source for producing multicolor photoluminescent carbon dots by chemical oxidation[J]. Chem Commun,2010,46(46):8812.
8 Zhang P, Li W, Zhai X, et al. A facile and versatile approach to biocompatible “fluorescent polymers” from polymerizable carbon na-nodots[J]. Chem Commun,2012,48(84):10431.
9 Lin Z, Xue W, Chen H, et al. Peroxynitrous-acid-induced chemiluminescence of fluorescent carbon dots for nitrite sensing[J]. Analyt Chem,2011,83(21):8245.
10 Huang Q, Hu S, Zhang H, et al. Carbon dots and chitosan compo-site film based biosensor for the sensitive and selective determination of dopamine[J]. Analyst,2013,138(18):5417.
11 Liu J H, Huang X Z, Dong Y Y. Fluorescent carbon dots for biolo-gical imaging: Preparation, application,pharmacokinetics and toxicity[J]. J Southwest University for Nationalities:Nat Sci Ed,2014, 40(6):818(in Chinese).
刘佳蕙, 黄旭泽, 董益阳. 荧光碳量子点的合成与生物成像应用及生物安全性研究进展[J]. 西南民族大学学报:自然科学版,2014,40(6):818.
12 Luo P G, Sahu S, Yang S T, et al. Carbon “quantum” dots for optical bioimaging[J]. J Mater Chem B,2013,1(16):2116.
13 Li H, Kang Z, Liu Y, et al. Carbon nanodots: Synthesis, properties and applications[J]. J Mater Chem,2012,22(46):24230.
14 Baker S N, Baker G A. Luminescent carbon nanodots: Emergent nanolights[J]. Angew Chem Int Ed,2010, 49(38):6726.
15 da Silva J C G E, Gonçalves H M R. Analytical and bioanalytical applications of carbon dots[J]. TrAC Trends Analyt Chem,2011,30(8):1327.
16 Wang X, Cao L, Lu F, et al. Photoinduced electron transfers with carbon dots[J]. Chem Commun, 2009,25:3774.
17 Cao L, Wang X, Meziani M J, et al. Carbon dots for multiphoton bioimaging[J]. J Am Chem Soc,2007,129(37):11318.
18 Yang Y, Cui J, Zheng M, et al. One-step synthesis of amino-functionalized fluorescent carbon nanoparticles by hydrothermal carbonization of chitosan[J]. Chem Commun,2012,48(3):380.
19 Qiu Y Q, Cai J Y. Development of quantum dots for cellular and in vivo animals imaging[J]. Mater Rev:Rev, 2012,26(1):16(in Chinese).
邱月琴, 蔡继业. 量子点在细胞以及体内生物中成像的研究进展[J]. 材料导报:综述篇,2012,26(1):16.
20 Yang S T, Cao L, Luo P G, et al. Carbon dots for optical imaging in vivo[J]. J Am Chem Soc,2009,131(32):11308.
21 Li N, et al. Biodistribution study of carbogenic dots in cells and in vivo for optical imaging[J]. J Nanopart Res,2012,14(10):1177.
22 Zhang M, Ju H, Zhang L, et al. Engineering iodine-doped carbon dots as dual-modal probes for fluorescence and X-ray CT imaging[J]. Int J Nanomedicine,2015,10:6943.
23 Fowley C, Nomikou N, et al. Extending the tissue penetration capability of conventional photosensitisers: A carbon quantum dot-protoporphyrin Ⅸ conjugate for use in two-photon excited photodynamic therapy[J]. Chem Commun,2013,49(79):8934.
24 Huang P, Lin J, Wang X, et al. Light-triggered theranostics based on photosensitizer-conjugated carbon dots for simultaneous enhanced-fluorescence imaging and photodynamic therapy[J]. Adv Mater,2012,24(37):5104.
25 Zhou L, Li Z, Liu Z, et al. Luminescent carbon dot-gated nanovehicles for pH-triggered intracellular controlled release and imaging[J]. Langmuir,2013,29(21):6396.
26 Lai C W, Hsiao Y H, Peng Y K, et al. Facile synthesis of highly emissive carbon dots from pyrolysis of glycerol; gram scale production of carbon dots/mSiO2 for cell imaging and drug release[J]. J Mater Chem,2012,22(29):14403.
27 Anilkumar P, Wang X, Cao L, et al. Toward quantitatively fluorescent carbon-based “quantum” dots[J]. Nanoscale,2011,3(5):2023.
28 Hsu P C, Chang H T. Synthesis of high-quality carbon nanodots from hydrophilic compounds: Role of functional groups[J]. Chem Commun,2012,48(33):3984.
29 Jaiswal A, Ghosh S S, Chattopadhyay A. One step synthesis of C-dots by microwave mediated caramelization of poly (ethylene glycol)[J]. Chem Commun,2012,48(3):407.
30 Wang X L. Explore the photoluminescence mechenism of carbon quantum dots based on the hydrathermal synthesis and gradiend se-paration method[D]. Beijing: Beijing University of Chemical Technology,2015(in Chinese).
王晓磊. 基于水热合成和梯度分离法探究碳量子点的发光机理[D]. 北京: 北京化工大学,2015.
31 Zhu S, Song Y, et al. The photoluminescence mechanism in carbon dots (graphene quantum dots, carbon nanodots, and polymer dots): Current state and future perspective[J]. Nano Res,2015,8(2):355.
32 Sun Y P, et al. Quantum-sized carbon dots for bright and colorful photoluminescence[J]. J Am Chem Soc,2006,128(24):7756.
33 Liu H, Ye T, Mao C. Fluorescent carbon nanoparticles derived from candle soot[J]. Angew Chem Int Ed,2007, 46(34):6473.
34 Feng L, Zhao A, et al. Lighting up left-handed Z-DNA: Photoluminescent carbon dots induce DNA B to Z transition and perform DNA logic operations[J]. Nucleic Acids Res,2013,41(16):7987.
35 Sheng Y Z. Preparation of water-soluble carbon dots via hydrothermal method and their fluorescence properties and applications[D]. Lanzhou: Lanzhou University,2015(in Chinese).
盛英卓. 水热法制备水溶性碳点及其荧光性能与应用研究[D]. 兰州: 兰州大学,2015.
36 Lu Q. The preparation of carbon dots and its applications in environmental and biological analysis[D]. Zhenjiang: Jiangsu University,2016(in Chinese).
卢庆. 碳量子点的制备及其在环境与生物分析中的应用[D]. 镇江: 江苏大学,2016.
37 Qi G Q, Luo Z M. Preparation and application of carbon quantum dots[J]. J Nanjing University of Posts and Telecommunications:Nat Sci Ed,2015,35(5):122(in Chinese).
漆光骎, 罗志敏. 碳量子点的制备及其应用研究[J]. 南京邮电大学学报:自然科学版,2015,35(5):122.
38 Sun Y P, Wang X, Lu F, et al. Doped carbon nanoparticles as a new platform for highly photoluminescent dots[J]. J Phys Chem C,2008,112(47):18295.
39 Eda G, Chhowalla M. Chemically derived graphene oxide: Towards large-area thin-film electronics and optoelectronics[J]. Adv Mater,2010,22(22):2392.
40 Chen P C, Chen Y N, Hsu P C, et al. Photoluminescent organosilane-functionalized carbon dots as temperature probes[J]. Chem Commun,2013,49(16):1639.
41 Pan L, Sun S, et al. Truly fluorescent excitation-dependent carbon dots and their applications in multicolor cellular imaging and multidimensional sensing[J]. Adv Mater,2015,27(47):7782.
42 Zhou N. Cellular behavior study and neuroanatomical tracing application of carbon dots[D]. Changchun:Jilin University,2015(in Chinese).
周南. 碳点的细胞行为学研究与神经示踪应用[D]. 长春: 吉林大学,2015.
43 Wu Z L, Zhang P, Gao M X, et al. One-pot hydrothermal synthesis of highly luminescent nitrogen-doped amphoteric carbon dots for bioimaging from Bombyx mori silk-natural proteins[J]. J Mater Chem B,2013, 1(22):2868.
44 Tan M, Zhang L, Tang R, et al. Enhanced photoluminescence and characterization of multicolor carbon dots using plant soot as a carbon source[J]. Talanta,2013,115:950.
45 Wang F, Pang S, Wang L, et al. One-step synthesis of highly luminescent carbon dots in noncoordinating solvents[J]. Chem Mater,2010,22(16):4528.
46 Li H, He X, Liu Y, et al. One-step ultrasonic synthesis of water-soluble carbon nanoparticles with excellent photoluminescent properties[J]. Carbon,2011,49(2):605.
47 Zhao Q L, Zhang Z L, Huang B H, et al. Facile preparation of low cytotoxicity fluorescent carbon nanocrystals by electrooxidation of graphite[J]. Chem Commun,2008,41:5116.
48 Peng H, Travas-Sejdic J. Simple aqueous solution route to luminescent carbogenic dots from carbohydrates[J]. Chem Mater,2009,21(23):5563.
49 Jia X, Li J, Wang E. One-pot green synthesis of optically pH-sensitive carbon dots with upconversion luminescence[J]. Nanoscale,2012,4(18):5572.
50 Zong J, Zhu Y, Yang X, et al. Synthesis of photoluminescent carbogenic dots using mesoporous silica spheres as nanoreactors[J]. Chem Commun,2011,47(2):764.
51 Zhu S, Zhang J, Liu X, et al. Graphene quantum dots with controllable surface oxidation, tunable fluorescence and up-conversion emission[J]. RSC Adv,2012,2(7):2717.
52 Shen J, et al. Facile preparation and upconversion luminescence of graphene quantum dots[J]. Chem Commun,2011,47(9):2580.
53 Li F. Synthesis of highly luminescent carbon quantum dots and their applications[D]. Beijing:Academy of Military Medical Sciences,2015(in Chinese).
李钒. 高荧光碳量子点的制备及其应用研究[D]. 北京:中国人民解放军军事医学科学院,2015.
54 Li H, et al. Water-soluble fluorescent carbon quantum dots and photocatalyst design[J]. Angew Chem Int Ed,2010,49(26):4430.
55 Sahu S, Behera B, Maiti T K, et al. Simple one-step synthesis of highly luminescent carbon dots from orange juice: Application as excellent bio-imaging agents[J]. Chem Commun,2012,48(70):8835.
56 Wei J, Shen J, Zhang X, et al. Simple one-step synthesis of water-soluble fluorescent carbon dots derived from paper ash[J]. RSC Adv,2013,3(32):13119.
57 Xu Y, Wu M, et al. Nitrogen-doped carbon dots: A facile and ge-neral preparation method, photoluminescence investigation, and imaging ppplications[J]. Chemistry—A Eur J,2013,19(7):2276.
58 Wang F, et al. Highly luminescent organosilane-functionalized carbon dots[J]. Adv Funct Mater,2011,21(6):1027.
59 Li Q, Ohulchanskyy T Y, Liu R, et al. Photoluminescent carbon dots as biocompatible nanoprobes for targeting cancer cells in vitro[J]. J Phys Chem C,2010,114(28):12062.
60 Liu J H, Cao L, et al. Carbon “quantum” dots for fluorescence labeling of cells[J]. ACS Appl Mater Interfaces,2015,7(34):19439.
61 Kang Y F, Li Y H, Fang Y W, et al. Carbon quantum dots for zebrafish fluorescence imaging[J]. Sci Rep,2015, 5:11835.
62 Li L B, Li W M, Xiang L H, et al. Photodynamic therapy: Clinical research and application in china[J]. Chin J Laser Medicine Surgery,2012,21(5):278(in Chinese).
李黎波, 李文敏, 项蕾红, 等. 光动力疗法在中国的应用与临床研究[J]. 中国激光医学杂志,2012,21(5):278.
63 Chen Y, Li W W, Zhou J J, et al. Molecular mechanism of photodynamic therapy[J]. J Central South University:Medical Sci Ed,2014,39(1):102(in Chinese).
陈勇, 李婉婉, 周江蛟,等. 光动力疗法分子机制研究进展[J]. 中南大学学报:医学版,2014,39(1):102.
64 Wang Q, Huang X, Long Y, et al. Hollow luminescent carbon dots for drug delivery[J]. Carbon,2013, 59(4):192.
65 Liu C, Zhang P, Zhai X, et al. Nano-carrier for gene delivery and bioimaging based on carbon dots with PEI-passivation enhanced fluorescence[J]. Biomaterials,2012,33(13):3604.
66 Song Y, Feng D, Shi W, et al. Parallel comparative studies on the toxic effects of unmodified CdTe quantum dots, gold nanoparticles, and carbon nanodots on live cells as well as green gram sprouts[J]. Talanta,2013,116:237.
67 Huang X, Zhang F, Zhu L, et al. Effect of injection routes on the biodistribution, clearance, and tumor uptake of carbon dot[J]. ACS Nano,2013,7(7):5684.
68 Ray S C, Saha A, Jana N R, et al. Fluorescent carbon nanoparticles: Synthesis, characterization, and bioimaging application[J]. J Phys Chem C,2009,113(43):18546.
69 Yang S T, Wang X, Wang H, et al. Carbon dots as nontoxic and high-performance fluorescence imaging agents[J]. J Phys Chem C,2009,113(42):18110.
70 Wang K, Gao Z, Gao G, et al. Systematic safety evaluation on photoluminescent carbon dots[J]. Nanoscale Res Lett,2013,8(1):122.
71 Gao Z, et al. Carbon dots: A safe nanoscale substance for the immunologic system of mice[J]. Nanoscale Res Lett,2013,8(1):276.
72 Duncan R. The dawning era of polymer therapeutics[J]. Nature Rev Drug Discovery,2003,2(5):347.
[1] 张晓君, 武佳龙, 乔楠, 于大禹, 孙墨杰, 陈景. 氮掺杂木质素基碳量子点在次氯酸根离子检测中的应用[J]. 材料导报, 2024, 38(24): 23050197-5.
[2] 于巧玲, 刘成宝, 金涛, 陈丰, 钱君超, 邱永斌, 孟宪荣, 陈志刚. CuS/CQDs/g-C3N4复合材料的合成及光催化性能[J]. 材料导报, 2024, 38(11): 22090279-7.
[3] 赵艳艳, 范敬煜, 魏景, 施欢贤. 碳量子点/Bi2WO6复合材料高效光催化降解RhB和杀灭大肠杆菌及其催化活性增强机理研究[J]. 材料导报, 2023, 37(5): 21060126-8.
[4] 刘飞燕, 赵笙良, 赖璇迪, 陆志扬, 李霖峰, 韩培刚, 陈丽琼. 基于金纳米簇和碳量子点的比率荧光传感法快速检测Hg2+[J]. 材料导报, 2023, 37(21): 22070224-8.
[5] 李佳佳, 张瑞龙, 张忠平. 亚铁离子荧光探针研究进展[J]. 材料导报, 2023, 37(2): 21030055-8.
[6] 张文博, 石建丽, 马建中, 卫林峰, 范倩倩. 荧光碳量子点及其在防伪中的应用[J]. 材料导报, 2022, 36(7): 20110186-11.
[7] 丁梅鹃, 史慧芳, 安众福. 有机室温磷光材料在生物医学中的应用[J]. 材料导报, 2022, 36(3): 22010004-11.
[8] 孙志雅, 孟宇航, 杨华明. 黏土矿物基载药体系的研究进展[J]. 材料导报, 2022, 36(2): 20110152-10.
[9] 李静芝, 高志贤, 李双, 赵旭东, 秦英凯, 刘辉, 韩铁. 上转换纳米颗粒的发光机理、制备及生物应用进展[J]. 材料导报, 2022, 36(14): 20110168-11.
[10] 吴雪莲, 杨建, 屈阳, 王秀敏. 形状记忆聚合物智能材料在生物医学领域的应用[J]. 材料导报, 2021, 35(z2): 492-500.
[11] 马思阳, 张晓琳, 宫蕾, 詹世平, 侯维敏, 卢春兰. 基于AIE特性的有机小分子和聚合物的应用进展[J]. 材料导报, 2021, 35(Z1): 566-570.
[12] 杨璐, 王泽方. 氮化硼量子点的制备及应用综述[J]. 材料导报, 2021, 35(1): 1058-1076.
[13] 方敏, 王璐, 侯佳欣, 南晓茹, 赵彬. 丝素蛋白复合石墨烯类材料在生物医学领域中的研究进展[J]. 材料导报, 2020, 34(Z1): 511-515.
[14] 朱俊名, 董梁, 秦溱, 李振楠, 袁青梅. 碳基及氧化锌量子点在癌症诊疗应用中的研究进展[J]. 材料导报, 2020, 34(9): 9075-9085.
[15] 拜凤姣, 王卉, 陈晓敏, 吴晨星, 张克勤. 丝素蛋白基纺织材料及其在生物医学领域的应用[J]. 材料导报, 2020, 34(7): 7154-7160.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed