Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (15): 75-80    https://doi.org/10.11896/j.issn.1005-023X.2017.015.011
  材料综述 |
双相不锈钢相分解研究进展*
闫志龙, 李永胜, 胡凯, 周晓荣
南京理工大学材料科学与工程学院,南京 210094;
Progress of Study on Phase Decomposition of Duplex Stainless Steel
YAN Zhilong, LI Yongsheng, HU Kai, ZHOU Xiaorong
College of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094;
下载:  全 文 ( PDF ) ( 1520KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 双相不锈钢以其优异的高温力学性能、耐腐蚀性和抗辐照损伤性能,在核电站等领域应用广泛。在300~550 ℃范围内服役时,合金中的铁素体相发生分解,形成体心结构的富Fe相和富Cr相,使双相不锈钢的力学性能变差,引起“475 ℃脆性”,影响合金的使用寿命和安全性。然而,Fe-Cr合金的分解机制随成分的变化以及混溶隙边界仍不明确,而分解机制和相边界决定着合金的分解动力学和微观组织。综述了近年来实验和相场模拟对Fe-Cr合金相分解的研究结果,并对需要解决的问题和发展方向进行了论述,以期为Fe-Cr系合金相分解研究提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
闫志龙
李永胜
胡凯
周晓荣
关键词:  相分解  Fe-Cr系合金  相场法    
Abstract: Duplex stainless steel has been used widely in industrial fields, such as nuclear power plant, for its excellent mechanical property, corrosion resistance and resistance to irradiation damage at high temperature. The ferritic phase decomposes into iron-rich phase and chromium-rich phase in the range of 300—550 ℃, which results in the “475 ℃ embrittlement” and the poor mechanical properties, affecting the service life and safety of duplex stainless steel. However, the decomposition mechanism of the alloy with the composition variation, and the boundary of miscible gap are still unclear, which affects the decomposition kinetics and microstructure of the alloy. The paper reviews the results of experiments and phase-field simulations on the phase decomposition of Fe-Cr alloys, discusses the unresolved issues and development direction in this field, attempting to provide a reference for related studies.
Key words:  phase decomposition    Fe-Cr alloy    phase-field
出版日期:  2017-08-10      发布日期:  2018-05-04
ZTFLH:  TB303  
基金资助: *国家自然科学基金(51571122);中央高校基本科研业务费专项资金(30916015107)
作者简介:  闫志龙:男,1989年生,硕士研究生,研究方向为合金相分解 李永胜:通讯作者,男,1976年生,博士,副教授,研究方向为金属材料及微观组织的相场模拟 E-mail:ysli@njust.edu.cn
引用本文:    
闫志龙, 李永胜, 胡凯, 周晓荣. 双相不锈钢相分解研究进展*[J]. 《材料导报》期刊社, 2017, 31(15): 75-80.
YAN Zhilong, LI Yongsheng, HU Kai, ZHOU Xiaorong. Progress of Study on Phase Decomposition of Duplex Stainless Steel. Materials Reports, 2017, 31(15): 75-80.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.015.011  或          https://www.mater-rep.com/CN/Y2017/V31/I15/75
1 Gao Wa, Luo Jianmin, Yang Jianjun. Research progress and application of double phase stainless steel[J]. Ordnance Mater Sci Eng,2005,28(3):61(in Chinese).
高娃, 罗建民, 杨建君. 双相不锈钢的研究进展及其应用[J]. 兵器材料科学与工程,2005,28(3):61.
2 Klueh R L. Elevated temperature ferritic and martensitic steels and their application to future nuclear reactors[J]. Int Mater Rev,2005, 50(5):287.
3 Klueh R L, Nelson A T. Ferritic/martensitic steels for next-generation reactors[J]. J Nucl Mater,2007,371(1):37.
4 Sahu J K, Krupp U, Ghosh R N, et al. Effect of 475℃ embrittlement on the mechanical properties of duplex stainless steel[J]. Mater Sci Eng A,2009,508(1):1.
5 Bachhav M, Odette G R, Marquis E A. α′ precipitation in neutron-irradiated Fe-Cr alloys[J]. Scripta Mater,2014,74:48.
6 Pareige C, Kuksenko V, Pareige P. Behaviour of P, Si, Ni impurities and Cr in self ion irradiated Fe-Cr alloys—Comparison to neutron irradiation[J]. J Nucl Mater,2015,456:471.
7 Senninger O, Martínez E, Soisson F, et al. Atomistic simulations of the decomposition kinetics in Fe-Cr alloys: Influence of magnetism[J]. Acta Mater,2014,73:97.
8 Chen W Y, Miao Y, Gan J, et al. Neutron irradiation effects in Fe and Fe-Cr at 300 ℃[J]. Acta Mater,2016,111:407.
9 Korchuganova O A, Thuvander M, Aleev A A, et al. Microstructural evolution of Fe 22% Cr model alloy under thermal ageing and ion irradiation conditions studied by atom probe tomography[J]. J Nucl Mater,2016,477:172.
10 Bley F. Neutron small-angle scattering study of unmixing in Fe-Cr alloys[J]. Acta Metall Mater,1992,40(7):1505.
11 Cies′lak J, Dubiel S M. Nucleation and growth versus spinodal decomposition in Fe-Cr alloys: Mössbauer-effect modelling[J]. J Alloy Compd ,1998,269(1):208.
12 Lopez-Hirata V M, Cayetano-Castro N, Dorantes-Rosales H J, et al. Phase separation in aged diffusion-couples Fe/Fe-40at% Cr alloy[J]. Mater Trans,2011,52(12):2155.
13 Marquis E A, Bachhav M, Chen Y, et al. On the current role of atom probe tomography in materials characterization and materials science[J]. Curr Opin Solid St M,2013,17(5):217.
14 Mirzoev A A, Yalalov M M, Mirzaev D A. Calculation of the energy of mixing for the Fe-Cr alloys by the first-principles methods of computer simulation[J]. Phys Met Metall,2004, 97(4):336.
15 Pareige C, Roussel M, Novy S, et al. Kinetic study of phase transformation in a highly concentrated Fe-Cr alloy: Monte Carlo simulation versus experiments[J]. Acta Mater,2011,59(6): 2404.
16 Dopico I, Castrillo P, Martin-Bragado I. Quasi-atomistic modeling of the microstructure evolution in binary alloys and its application to the FeCr case[J]. Acta Mater,2015,95:324.
17 Hedström P, Baghsheikhi S, Liu P, et al. A phase-field and electron microscopy study of phase separation in Fe-Cr alloys[J]. Mater Sci Eng A,2012,534(1):552.
18 Xue F, Wang Z X, Zhang G D, et al. Numerical simulations of the phase separation properties for the thermal aged CDSS with phase field model[J]. Nucl Eng Des,2011,241(7):2378.
19 Fisher R M, Dulis E J, Carroll K C. Identification of the precipitate accompanying 885 °F embrittlement in chromium steels[J]. Trans AIME,1953,197(5):690.
20 Williams R O. Further studies of the iron-chromium system[J]. Trans Met Soc Aime,1958,212(12):497.
21 Bonny G, Terentyev D, Malerba L. On the α-α′ miscibility gap of Fe-Cr alloys[J]. Scripta Mater,2008,59(11):1193.
22 Cahn J W. On spinodal decomposition[J]. Acta Metall.1961,9: 795.
23 Chandra D, Schwartz L H. Mössbauer effect study of the 475℃ decomposition of Fe-Cr[J]. Metall Trans,1971,2(2):511.
24 Andersson J O, Sundman B. Thermodynamic properties of the Cr-Fe system[J]. Calphad,1987,11(1):83.
25 Binder K. Nucleation barriers, spinodals, and the Ginzburg criterion[J]. Phys Rev A,1984,29(1):341.
26 Xiong W, Selleby M, Chen Q, et al. Phase equilibria and thermodynamic properties in the Fe-Cr system[J]. Crtic Rev Solid State,2010,35(2):125.
27 Kuwano H. Mössbauer effect study on the mechanism of the phase decomposition in iron-chromium alloys[J]. Trans Jpn Inst Met,1985,26(7):482.
28 Lopez-Hirata V M, Soriano-Vargas O, Rosales-Dorantes H J, et al. Phase decomposition in an Fe-40 at.% Cr alloy after isothermal aging and its effect on hardening[J]. Mater Charact,2011,62(8): 789.
29 Westraadt J E, Olivier E J, Neethling J H. A high-resolution analy-tical scanning transmission electron microscopy study of the early stages of spinodal decomposition in binary Fe-Cr[J]. Mater Charact,2015,109:216.
30 Novy S, Pareige P, Pareige C. Atomic scale analysis and phase separation understanding in a thermally aged Fe-20at.%Cr alloy[J]. J Nucl Mater,2009,384(2):96.
31 Mohapatra J N, Kamada Y, Kikuchi H. Effect of Cr-rich phase precipitation on magnetic and mechanical properties of Fe-20% Cr alloy[J]. IEEE Trans Magn,2011,47(10):4356.
32 Xin X U, Odqvist J, Colliander M H, et al. Structural characterization of phase separation in Fe-Cr: A current comparison of experimental methods[J]. Metall Mater Trans A, 2016,47(12):1.
33 Chen L Q, Yang W. Computer simulation of the domain dynamics of a quenched system with a large number of non-conserved order parameters: The grain-growth kinetics[J]. Phys Rev B,1994,50(21):15752.
34 Chen L Q, Shen J. Applications of semi-implicit Fourier-spectral method to phase field equations[J]. Comput Phys Commun, 1998,108(2):147.
35 Honjo M, Saito Y. Numerical simulation of phase separation in Fe-Cr binary and Fe-Cr-Mo ternary alloys with use of the Cahn-Hilliard equation[J]. ISIJ Int,2000,40(9):914.
36 Soriano-Vargas O, Avila-Davila E O, Lopez-Hirata V M, et al. Effect of spinodal decomposition on the mechanical behavior of Fe-Cr alloys[J]. Mater Sci Eng A,2010,527(12):2910.
37 Li S X, Zhang H, Li S, et al. Effects of thermal aging temperature and Cr content on phase separation kinetics in Fe-Cr alloys simulated by the phase field method[J]. Int J Min Mater,2013, 20(11):1067.
38 Li S X, Lv X M, et al. Phase field simulation of phase decomposition after thermal aging[J]. Bull Chin Ceram Soc, 2013,32(5):965.
39 Lecoq N, Lacaze J, Danoix F, et al. Phase-field modelling of spino-dal decomposition during ageing and heating[J]. Solid State Pheno-mena,2011,172:1072.
40 Xiong W, Grönhagen K A, Ågren John, et al. Investigation of spinodal decomposition in Fe-Cr alloys: CALPHAD modeling and phase field simulation[J]. Solid State Phenomena,2011, 172-174:1060.
41 Liu W, Li Y S, Wu X C, et al. Phase-field simulation of the separation kinetics of a nanoscale phase in a Fe-Cr alloy[J]. J Mater Eng Perform,2016,25(5):1924.
42 Terentyev D A, Bonny G, Malerba L. Strengthening due to coherent Cr precipitates in Fe-Cr alloys: Atomistic simulations and theoretical models[J]. Acta Mater,2008,56(13):3229.
43 Li Y S, Li S X, Zhang T Y. Effect of dislocations on spinodal decomposition in Fe-Cr alloys[J]. J Nucl Mater,2009,395:120.
44 Biner S B, Tonks M R, Millett P C, et al. Progress on generic phase field method development[R]. PNNL Technical Report, PNNL-21811, Richland, Washington,2012.
45 Li Y S, Zhu H, Zhang L, et al. Phase decomposition and morphology characteristic in thermal aging Fe-Cr alloys under applied strain: A phase-field simulation[J]. J Nucl Mater,2012, 429(1):13.
46 Xiong W, Ågren J, et al. An effective method to estimate composition amplitude of spinodal decomposition for atom probe tomography validated by phase field simulations[J]. arXiv:1205.4195,2012.
47 Odqvist J, Zhou J, Xiong W, et al. 3D analysis of phase separation in ferritic stainless steels[C]//1st International Conference on 3D Materials Science 2012. Pittsburg, US,2013:221.
48 Xiong W, Hedström P, Selleby M. An improved thermodynamic modeling of the Fe-Cr system down to zero Kelvin coupled with key experiments[J]. Calphad,2011,35(3):355.
49 Miller M K, Stoller R E, Russell K F. Effect of neutron-irradiation on the spinodal decomposition of Fe-32% Cr model alloy[J]. J Nucl Mater,1996,230(3):219.
50 Dubey S, El-Azab A. Irradiation-induced composition patterns in binary solid solutions[J]. J Appl Phys,2013,114(12):124901.
51 Li Y L, Hu S Y, Sun X, et al. Phase-field model for interstitial loop growth kinetics and thermodynamic and kinetic models of irradiated Fe-Cr alloys[R]. PNNL Technical Report, PNNL-20467, Richland, Washington,2011.
[1] 刘发付, 高闯, 牟晓明, 张丛, 郭在在, 郭建斌, 曹剑武, 林广庆. 预烧结升温速率与HIP保温时间对AlON透明陶瓷透光率影响的研究[J]. 材料导报, 2023, 37(S1): 23030085-5.
[2] 高敬翔, 李昌, 陈正威, 韩兴. 基于相场法的超声振动对激光熔覆多晶凝固行为的影响[J]. 材料导报, 2021, 35(12): 12161-12168.
[3] 李昌, 高敬翔, 张大成, 于志斌, 韩兴. 基于PFM-FEM的多变体马氏体转变过程模拟及模型参数灵敏度分析[J]. 材料导报, 2019, 33(20): 3477-3488.
[4] 贾森森, 王永彪, 肖艳秋, 吴玉娟, 彭立明, 刘建秀, 刘新田. 镁合金微观组织的相场法模拟进展[J]. 材料导报, 2019, 33(19): 3306-3312.
[5] 耿汝伟, 杜军, 魏正英, 魏培. 金属增材制造中微观组织相场法模拟研究进展[J]. 《材料导报》期刊社, 2018, 32(7): 1145-1150.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed