Please wait a minute...
材料导报编辑部  2017, Vol. 31 Issue (10): 132-136    https://doi.org/10.11896/j.issn.1005-023X.2017.010.027
  计算模拟 |
冠状动脉支架纵向拉伸变形行为有限元分析*
申祥,谢中敏,邓永泉,纪松
江苏大学机械工程学院, 镇江 212013
Finite Element Analysis of Longitudinal Tensile Deformation Behavior of Coronary Stents
SHEN Xiang, XIE Zhongmin, DENG Yongquan, JI Song
School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013
下载:  全 文 ( PDF ) ( 1276KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 纵向强度是冠状动脉支架的一项重要力学性能,因强度不足而导致的支架纵向变形行为已成为经皮冠状动脉支架介入术最严重的并发症之一。运用有限元方法系统地分析了支架的扩张尺度、拉伸力的作用点位置和支撑单元之间的周向连接单元数量与形状对支架纵向拉伸变形行为的影响。结果显示,在支架结构设计参数中,连接单元的数量对支架纵向拉伸变形行为影响最大,增加连接单元的数量可以提高支架抵抗变形能力。连接单元形状对支架纵向拉伸变形行为影响次之,当支架的纵向变形位移为0.5 mm且将连接单元形状由S型转换为L型时支架纵向强度可以提高50%。对于同一种连接单元类型的支架,扩张尺度越大的支架越容易发生纵向变形。同时,结果显示支架远端与近端端部比支架中部更容易发生纵向变形。合理调整支架的设计参数可以有效改善支架的纵向拉伸变形行为,所得结论有助于支架设计师优化支架的结构设计以降低支架纵向变形程度。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
申祥
谢中敏
邓永泉
纪松
关键词:  冠状动脉支架  纵向拉伸变形  有限元分析  支架纵向强度  设计参数    
Abstract: Longitudinal stent strength was one of the most important mechanical properties of coronary stents, and the longitudinal deformation behavior of stent resulted from the lack of longitudinal strength had become one of the most serious complications of percutaneous coronary stent implantation. This paper established the model of the longitudinal tensile stent to systematically analysis the effects of stent expansion diameter, force load position, connector shape and circumferential connector number between struts on longitudinal tensile deformation behavior of the stent. Results showed that connector number played the most significant role on longitudinal tensile deformation, and increasing the connector number could substantially improve the longitudinal resistance. The connector shape played the second significant role on longitudinal tensile deformation, and the longitudinal resistance could be proved 50% when the longitudinal displacement of the stent was 0.5 mm and the connector shape was transformed from the S-stent to L-stent. For the same connector shape, increasing expansion diameter could likely occur the longitudinal deformation. Simultaneously, the results demonstrated the end of proximal and distal of stent was more longitudinal deformation than the middle of stent. Reasonably changing stent design parameters could effectively improve longitudinal tensile deformation. Conclusions obtained from this paper can help designers to optimize the stent design to reduce the longitudinal deformation.
Key words:  coronary stent    longitudinal tensile deformation    finite element analysis    longitudinal stent strength    design parameters
发布日期:  2018-05-08
ZTFLH:  TB301  
  R318.11  
  TP391.9  
基金资助: *国家自然科学基金(51305171);江苏省自然科学基金(BK20130525);江苏省高校自然科学基金(13KJB460006)
作者简介:  申祥:男,1980年生,博士,副教授,主要研究方向为微纳医疗器械性能分析及优化设计E-mail:sx@ujs.edu.cn
引用本文:    
申祥,谢中敏,邓永泉,纪松. 冠状动脉支架纵向拉伸变形行为有限元分析*[J]. 材料导报编辑部, 2017, 31(10): 132-136.
SHEN Xiang, XIE Zhongmin, DENG Yongquan, JI Song. Finite Element Analysis of Longitudinal Tensile Deformation Behavior of Coronary Stents. Materials Reports, 2017, 31(10): 132-136.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.010.027  或          https://www.mater-rep.com/CN/Y2017/V31/I10/132
1 Donahue M, Briguori C, Donahue M, et al. Coronary artery sten-ting in elderly patients: Where are we now[J]. Interventional Car-diology,2015,6(6):295.
2 Foin N, Mario C D, Francis D P, et al. Stent flexibility versus concertina effect: Mechanism of an unpleasant trade-off in stent design and its implications for stent selection in the cath-lab[J]. Int J Car-diology,2013,164(3):259.
3 Arnous S, Shakhshir N, Wiper A, et al. Incidence and mechanisms of longitudinal stent deformation associated with biomatrix, resolute, element, and xience stents: Angiographic and case-by-case review of 1,800 PCIs[J]. Catheterization Cardiovascular Interventions,2015,86(6):1002.
4 Guler A, Guler Y, Acar E, et al. Clinical, angiographic and procedural characteristics of longitudinal stent deformation[J]. Int J Cardiovascular Imaging,2016,32(8):1163.
5 Leong A M, Ong P J L, Ho H H, et al. Distal longitudinal defor-mation of a Synergy stent by jailed rotawire guidewire[J]. Herz,2017,42(2):209.
6 Belardi J A, Albertal M. When a stent gets shorty[J]. Catheterization Cardiovascular Interventions,2015,86(6):1012.
7 Rigattieri S, Sciahbasi A, Loschiavo P. The clinical spectrum of longitudinal deformation of coronary stents: From a mere angiographic finding to a severe complication[J]. J Invasive Cardiology,2013,25(5):101.
8 Williams P D, Mamas M A, Morgan K P, et al. Longitudinal stent deformation: A retrospective analysis of frequency and mechanisms[J]. Eurointervention,2012,8(2):267.
9 Cook S, Ladich E, Nakazawa G, et al. Correlation of intravascular ultrasound findings with histopathological analysis of thrombus aspirates in patients with very late drug-eluting stent thrombosis[J]. Circulation,2009,120(5):391.
10 Mortier P, De B M. Stent design back in the picture: An engineering perspective on longitudinal stent compression[J]. Eurointervention,2011,7(7):773.
11 Prabhu S, Schikorr T, Mahmoud T, et al. Engineering assessment of the longitudinal compression behaviour of contemporary coronary stents[J]. Eurointervention,2012,8(2):275.
12 Zhang Y H, Li H X, Wang X C. Fatigue life analysis for cardiovascular stent[J]. J Harbin Institute of Technology,2011(S1):86(in Chinese).
张艺浩, 李红霞, 王希诚. 血管支架疲劳寿命分析[J]. 哈尔滨工业大学学报,2011(S1):86.
13 Li N, Zhang H W. Numerical research on longitudinal flexibil ity of a coronary stent[J]. Chin J Comput Mech,2011,28(3):309(in Chinese).
李宁, 张洪武. 冠脉支架纵向柔顺性数值模拟[J]. 计算力学学报,2011,28(3):309.
14 Liu Q, Lei L P, Zeng P, et al. Numerical and experimental study of radial support capacity of intravascular stent[J]. Chin J Medical Instrumentation,2010,34(3):175(in Chinese).
刘倩, 雷丽萍, 曾攀,等. 血管支架径向支撑能力的数值模拟和实验研究[J]. 中国医疗器械杂志,2010,34(3):175.
15 Xu H J, Wang C E, Que Z W, et al. Preparation and radial compression performance of PDO intravascular stent[J]. J Donghua University:Nat Sci,2014,40(4):418(in Chinese).
许慧珺, 王聪儿, 阙志文,等. PDO血管内支架的制备及其径向压缩性能[J]. 东华大学学报:自然科学版,2014,40(4):418.
16 Ormiston J A, Webber B, Webster M W I. Stent longitudinal integrity: Bench insights into a clinical problem[J]. JACC Cardiovascular Interventions,2011,4(12):1310.
17 Ren Q S, Ren X L, Peng K, et al. Simulation study on expansion process of vascular stent in realistic stenosis model[J]. J Medical Biomechanics,2015,30(6):488(in Chinese).
任庆帅,任希力,彭坤,等. 血管支架在真实狭窄血管模型中扩张过程的模拟研究[J]. 医用生物力学,2015,30(6):488.
18 Chen Y, Xiong Y, Jiang W T, et al. Numerical simulation on the effects of drug-eluting stents with different bending angles on hemodynamics and drug distribution[J]. Medical Biological Eng,2016,54(12):1859.
19 Li H X, Wang X C. Stent optimization based on different expansion models[J]. J Harbin Institute of Technology,2011(S1):267(in Chinese).
李红霞, 王希诚. 基于不同扩张模拟方式的支架优化设计[J]. 哈尔滨工业大学学报,2011(S1):267.
20 Qiao A, Zhang Z. Numerical simulation of vertebral artery stenosis treated with different stents[J]. J Biomechanical Eng,2014,136(4):1274.
21 Jiang X D, Teng X Y, Shi D Y, et al. The nonlinear finite element analysis of curved vascular lesion mechanism by coronary stent intervention[J].J Funct Mater,2015(3):3050(in Chinese).
江旭东, 滕晓艳, 史冬岩,等. 冠脉支架对弯曲血管损伤机理的非线性有限元分析[J]. 功能材料,2015(3):3050.
22 Chen H M, Liu Z, Han Y D, et al. Effects of stent parameters on vascular wall shear stress[J]. J Medical Biomechanics,2016,31(1):8(in Chinese).
陈鹤鸣, 柳臻, 韩宜丹,等. 支架参数对血管壁面剪切应力的影响[J]. 医用生物力学,2016,31(1):8.
23 Li H X, Qiu T S, Zhu B, et al. Design optimization of coronary stent based on finite element models[J]. Sci World J,2013,2013(5):630243.
24 Feng H Q, Sun L L, Han Q S, et al. The simulation and research with deformation behavior and mechanical properties of stents in narrow blood vessel[J]. J Funct Mater,2015,46(22):22085(in Chinese).
冯海全,孙丽丽, 韩青松,等.狭窄血管内支架变形行为及力学性能模拟研究[J]. 功能材料,2015,46(22):22085.
25 Wang J L, Chen H Y, Chen X, et al. Finite element simulation of coronary stent expansion process[J]. Mater Rev: Res,2009,23(7):70(in Chinese).
王佳玲,陈华予,陈曦,等. 冠脉支架膨胀过程的有限元模拟[J]. 材料导报:研究篇,2009,23(7):70.
26 Wang W Q, Wang L, Yang D Z, et al. Design optimization of endovascular stent by finite element method[J]. J Biomedical Eng,2008,25(2):372(in Chinese).
王伟强, 王丽, 杨大智,等. 血管支架有限元优化设计[J]. 生物医学工程学杂志,2008,25(2):372.
27 Hsiao H M, Yeh C T, Wang C, et al. Effects of stent design on new clinical issue of longitudinal stent compression in interventional car-diology[J]. Biomedical Microdevices,2014,16(4):599.
28 Ragkousis G E, Curzen N, Bressloff N W. Simulation of longitudinal stent deformation in a patient-specific coronary artery[J]. Medical Eng Phys,2014,36(4):467.
[1] 冯超, 杨子帆, 刘曰利. SnBiAg无铅钎料恒温激光焊接的数值模拟与实验研究[J]. 材料导报, 2025, 39(3): 24010216-6.
[2] 方新宇, 徐干成, 魏迎奇, 刘彦泉, 袁伟泽, 周俊鹏. 新型高强钢板在结构抗接触爆炸中的应用[J]. 材料导报, 2024, 38(5): 23060206-7.
[3] 吴子豪, 苏荣华, 马超, 解帅, 冀志江, 王英翔, 王静. 轻骨料水泥基多功能吸波材料的制备及有限元分析[J]. 材料导报, 2024, 38(5): 23080253-7.
[4] 苏三庆, 邓瑞泽, 王威, 易术春, 左付亮, 刘馨为, 李俊廷. 基于金属磁记忆的弯曲工字钢梁的力-磁效应[J]. 材料导报, 2024, 38(4): 22070065-8.
[5] 陈守东, 陈敬琪, 李杰, 孙建, 卢日环. 复合成形轧制铜极薄带变形局部化的晶体塑性有限元模拟[J]. 材料导报, 2023, 37(2): 21050240-10.
[6] 周敏, 吴泽媚, 欧阳雪, 胡翔, 史才军. 组成及骨料特性对UHPC基体流动性和抗压强度的影响[J]. 材料导报, 2023, 37(18): 22060073-9.
[7] 陈守东, 卢日环, 孙建, 李杰. 异步冷轧少晶铜薄带局部变形的CP-FE模拟[J]. 材料导报, 2023, 37(14): 21120214-10.
[8] 李斌, 周薇. CFRP管约束混凝土柱轴压性能试验及有限元分析研究[J]. 材料导报, 2022, 36(Z1): 22040146-6.
[9] 杨康, 李东辉, 郭义林, 马刚, 耿昊, 李群芳, 薛继佳. 某型四座电动飞机复合材料机翼剪切性能试验与分析[J]. 材料导报, 2021, 35(Z1): 485-488.
[10] 孙朝海, 黄炎, 杨康, 姬书得, 岳玉梅. 工装模具对复合材料件固化变形影响的有限元分析[J]. 材料导报, 2021, 35(Z1): 607-612.
[11] 余坤, 文立伟, 宦华松, 唐鹏刚. 缝合增强复合材料帽型加筋壁板界面拉脱性能[J]. 材料导报, 2021, 35(24): 24189-24194.
[12] 陈宗平, 许瑞天, 梁厚燃. 高温喷水冷却后再生卵石混凝土应力-应变本构关系及有限元分析[J]. 材料导报, 2021, 35(13): 13032-13040.
[13] 赵昌方, 周志坛, 朱宏伟, 邢成龙, 任杰, 仲健林, 乐贵高. 锻造/层合碳纤维-环氧树脂复合材料压缩性能实验与仿真[J]. 材料导报, 2021, 35(12): 12209-12213.
[14] 赵宇航, 高莹, 王永旺, 陈东, 张云峰. 粉煤灰制硅酸盐防腐砖在复杂工况下的性能退化研究[J]. 材料导报, 2020, 34(Z2): 304-307.
[15] 赵宇航, 王永旺. 硅酸盐胶黏剂在高温磨蚀条件下的退化行为[J]. 材料导报, 2020, 34(Z1): 181-184.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed