Please wait a minute...
材料导报  2018, Vol. 32 Issue (6): 1032-1036    https://doi.org/10.11896/j.issn.1005-023X.2018.06.033
  计算模拟 |
正交试验协同BP神经网络模型预测充填体强度
董越1, 杨志强1, 2, 高谦1
1 北京科技大学,金属矿山高效开采与安全教育部重点实验室,北京 100083;
2 金川集团股份有限公司, 镍钴资源综合利用国家重点实验室,金昌 737100
Strength Forecasting of Backfilling Materials by BP Neural Network Model Collaborated with Orthogonal Experiment
DONG Yue1, YANG Zhiqiang1, 2, GAO Qian1
1 Key Laboratory of High Efficient Mining and Safety of Metal Mine Ministry of Education, University of Science and Technology Beijing, Beijing 100083;
2 State Key Laboratory of Comprehensive Utilization of Nickel and Cobalt Resources, Jinchuan Group Co. LTD., Jinchang 737100
下载:  全 文 ( PDF ) ( 1409KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为准确预测充填体强度,基于18组混合水平的正交试验样本,以水泥熟料、脱硫灰渣、芒硝和钢渣的掺量作为4个输入因子,以充填体的7 d和28 d抗压强度作为输出因子,建立4×Y×2的BP神经网络充填体强度预测模型,并通过训练误差和预测强度误差的对比获得当隐含层神经元的个数Y取值为9时,模型的预测强度误差最小,其平均误差为0.7%。研究表明,该预测模型拟合的相关系数R高达0.999 89,7 d和28 d预测强度的最大相对误差分别为4.33%和0.84%,通过正交试验协同BP神经网络模型预测充填体强度可行性较强、准确度较高。该方法具有输入数据均匀分散、齐整可比和非线性优化的优点,为充填体强度的准确预测提供了新思路。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
董越
杨志强
高谦
关键词:  BP神经网络模型  正交试验  充填体  强度预测    
Abstract: In order to forecast the strength of backfilling materials accurately,based on the 18 mixed samples of orthogonal test, the 4×Y×2 BP neural network model was established, in which cement clinker, desulphurized ash, Glauber’s salt and steel slag were utilized as four input factors and the compressive strength of 7 d and 28 d were used as output factors. Then, the training error curve and the predicted intensity error were analyzed. When the number of neurons in the hidden layer was 9, the prediction strength error of the model is minimized and the average error was 0.7%. The results revealed that the fitting correlation coefficient was 0.999 89 and the maximum relative error of 7 d and 28 d prediction strength were 4.33% and 0.84%, respectively. The method of BP neural network model collaborated with orthogonal experiment to forecast the compressive strength of backfilling materials are more feasibility and accurate. This method has advantages of high uniformity and non-linear optimization of input data, which provides a new idea for accurate prediction of backfilling materials strength.
Key words:  BP neural network model    orthogonal experiment    backfilling materials    strength forecasting
出版日期:  2018-03-25      发布日期:  2018-03-25
ZTFLH:  TD853  
基金资助: 国家高技术研究发展计划(863计划)(SS2012AA062405)
通讯作者:  高谦,男,1956年生,教授,博士研究生导师,主要从事充填采矿和地压控制方面的教学与研究工作 E-mail:gaoqian@ces.ustb.edu.cn   
作者简介:  董越:男,1990年生,博士研究生,主要从事工业固体废弃物的利用与水泥基复合材料的研究 E-mail:597768199@qq.com
引用本文:    
董越, 杨志强, 高谦. 正交试验协同BP神经网络模型预测充填体强度[J]. 材料导报, 2018, 32(6): 1032-1036.
DONG Yue, YANG Zhiqiang, GAO Qian. Strength Forecasting of Backfilling Materials by BP Neural Network Model Collaborated with Orthogonal Experiment. Materials Reports, 2018, 32(6): 1032-1036.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.06.033  或          https://www.mater-rep.com/CN/Y2018/V32/I6/1032
1 Dong Y, Yang Z Q, Gao Q. Effect of steel slag substitution on the properties of composite cementitious backfill material[J].Bulletin of the Chinese Ceramic Society,2016(9):2967(in Chinese).
董越,杨志强,高谦.钢渣取代量对复合充填胶凝材料性能的影响[J].硅酸盐通报,2016(9):2967.
2 Feng G M. Research on the superhigh-water packing material and filling mining technology and their application[D].Xuzhou:China University of Mining and Technology,2009(in Chinese).
冯光明. 超高水充填材料及其充填开采技术研究与应用[D].徐州:中国矿业大学,2009.
3 Yang J H. Gangue stowing technology of full-mechanized mining face with large mining-height in deep mine[J].Coal Mining Technology,2014(6):77(in Chinese).
杨军辉. 深部大采高综采面矸石充填开采技术[J].煤矿开采,2014(6):77.
4 Liu C, Han B, Sun W, et al. Experimental study of strength of backfillings of cemented rock debris and its application under low temperature condition[J].Chinese Journal of Rock Mechanics and Engineering,2015(1):139(in Chinese).
刘超,韩斌,孙伟,等.高寒地区废石破碎胶结充填体强度特性试验研究与工业应用[J].岩石力学与工程学报,2015(1):139.
5 Wei W, Gao Q. Strength prediction of backfilling body based on modified BP neural network[J].Journal of Harbin Institute of Technology,2013(6):90(in Chinese).
魏微,高谦.改进的BP神经网络模型预测充填体强度[J].哈尔滨工业大学学报,2013(6):90.
6 Xu M F, Gao Y T, Jin A B, et al. Prediction of cemented backfill strength by ultrasonic pulse velocity and BP neural network[J].Chinese Journal of Engineering,2016(8):1059(in Chinese).
徐淼斐,高永涛,金爱兵,等.基于超声波波速及BP神经网络的胶结充填体强度预测[J].工程科学学报,2016(8):1059.
7 Zhang Q L, Li X P, Yang W. Optimization of filling slurry ratio in a mine based on back-propagation neural network[J].Journal of Central South University(Science and Technology),2013(7):2867(in Chinese).
张钦礼,李谢平,杨伟.基于BP网络的某矿山充填料浆配比优化[J].中南大学学报(自然科学版),2013(7):2867.
8 Liu H L, Zhang Q L, Wang X M, et al. Strength prediction of unclassified tailing backfilling based on orthogonal-BP neural network[J].Metal Mine,2016(1):43(in Chinese).
刘恒亮,张钦礼,王新民,等.全尾砂充填体正交-BP神经网络强度预测[J].金属矿山,2016(1):43.
9 Li Peng. Analysis and research on influence factors of cement tailings[D].Kunming:Kunming University of Science and Technology,2011(in Chinese).
李鹏. 尾砂胶结充填体强度影响因素分析与研究[D].昆明:昆明理工大学,2011.
10 Liu Z X, Zhou S L, Guo Y L. GA-BP neural network prediction model for strength of phosphogypsum backfill[J].Mining and Metallurgical Engineering,2011(6):1(in Chinese).
刘志祥,周士霖,郭永乐.磷石膏充填体强度GA-BP神经网络预测模型[J].矿冶工程,2011(6):1.
11 Han B, Wang X L, Xiao W G. Estimation and evaluation of backfill strength in underground stope based on multivariate nonlinear[J].Journal of Mining & Safety Engineering,2012(5):714(in Chinese).
韩斌,王贤来,肖卫国.基于多元非线性回归的井下采场充填体强度预测及评价[J].采矿与安全工程学报,2012(5):714.
12 何玉斌,李新忠. 神经网络控制技术及其应用[M].北京:科学出版社,2000.
13 Zhang S, Wang B, Li X,et al. Research and application of improved gas concentration prediction model based on grey theory and BP neural network in digital mine[J].Procedia CIRP,2016,56:471.
14 Jiang J P. Prediction of concrete strength based on BP neural network[J].Advanced Materials Research,2012, 341-342:58.
15 Yao Hui Qin, Jiang Ye Long. Based on the genetic algorithm to optimize the BP neural network in the degree of concrete creep prediction model[J].Applied Mechanics and Materials,2014, 584-586:1346.
16 Zhang Y H, Sun H, Li X, et al. Study of steam-cured system impact on concrete compressive strength and prediction of strength model[J].Materials Review,2015(s2):554(in Chinese).
张耀煌,孙红,李晓,等.蒸养制度对混凝土抗压强度的影响及其预测研究[J].材料导报,2015(s2):554.
17 Wang Y T, Yang Z Q, Li M H,et al. Preparation of new backfill cementitious materials with unclassified tailings-rod milling sands[J].Chinese Journal of Materials Research,2015(4):291(in Chinese).
王有团,杨志强,李茂辉,等.全尾砂-棒磨砂新型胶凝充填材料的制备[J].材料研究学报,2015(4):291.
[1] 孙海宽, 甘德清, 薛振林, 刘志义, 张雅洁. 碱渣改性充填体早期力学特性及能量演化特征[J]. 材料导报, 2024, 38(9): 22070248-7.
[2] 赵新元, 杨科, 何祥, 魏祯, 于祥, 张继强. 基于RSM-BBD的多源煤基固废胶结体配比及性能研究[J]. 材料导报, 2024, 38(9): 22090099-7.
[3] 李金鑫, 孙伟, 李兆宇, 陈冲, 刘增, 姜明归, 樊凯. 冲击荷载作用下分层充填体能量演化与破坏模式分析[J]. 材料导报, 2023, 37(20): 22030169-9.
[4] 吕婉毓, 郭乃胜, 褚召阳, 房辰泽. 水性丙烯酸基道路标线涂料的制备与性能研究[J]. 材料导报, 2023, 37(18): 22040043-7.
[5] 王俊辉, 黄悦, 杨国涛, 魏琦安, 刘文卓. 再生混凝土抗压性能研究进展[J]. 材料导报, 2022, 36(Z1): 21100033-9.
[6] 姚维, 郑伯坤, 邱景平, 黄腾龙, 尹旭岩. 外加剂对膨胀充填材料性能的影响[J]. 材料导报, 2022, 36(Z1): 20070045-5.
[7] 熊康, 杨啟梁, 胡溧. 低污染汽车聚氨酯泡沫设计与吸声性能研究[J]. 材料导报, 2022, 36(5): 20110059-5.
[8] 张亚南, 周子超, 张豪, 肖宇琦, 邓娜, 付彬芸, 多树旺. 工艺参数对等离子增强磁控溅射TiAlN涂层微观结构及性能的影响[J]. 材料导报, 2022, 36(24): 21010184-6.
[9] 宋学朋, 郝宇鑫, 王石, 刘晨晖, 张辽. 不同加载速率下差异性含水率尾砂胶结充填体力学行为及损伤特性研究[J]. 材料导报, 2022, 36(24): 21090173-10.
[10] 徐县, 康晶, 蔡新华, 王维康. 碱激发锌渣胶凝材料设计制备与微观结构分析[J]. 材料导报, 2022, 36(22): 21050274-7.
[11] 王建民, 肖自强, 范奕涛, 汪能君, 王万祯, 柳俊哲. 组合混凝土界面粘结性能多因素正交试验分析[J]. 材料导报, 2022, 36(2): 20100056-6.
[12] 李克亮, 宋子明. 基于正交试验的拜耳法赤泥活化机理及性能分析[J]. 材料导报, 2022, 36(16): 21040130-7.
[13] 吴凡, 莫丙忠, 何利娟, 莫松平, 贾莉斯, 陈颖. 利用田口实验设计的NaNO3@SiO2微胶囊及其相变性能[J]. 材料导报, 2022, 36(14): 20090293-5.
[14] 吴磊, 陶忠, 赵志曼, 陶燕, 张毅, 刘卓. 基于NSGM(1,3)模型的短切聚丙烯纤维-磷建筑石膏复合材料强度预测[J]. 材料导报, 2021, 35(z2): 655-659.
[15] 邓德伟, 吕捷, 马玉山, 张勇, 黄治冶. FV520B钢激光焊接工艺参数优化及组织性能[J]. 材料导报, 2021, 35(8): 8127-8133.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed