Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (6): 11-15    https://doi.org/10.11896/j.issn.1005-023X.2017.06.003
  材料研究 |
SrCO3掺杂对PMN-PMnN-PZT-Ce压电陶瓷储能及介电弛豫性能的影响
张浩, 郑德一, 胡顺敏, 彭贵贵, 程程, 张静
贵州大学材料与冶金学院, 贵阳 550000
Effect of SrCO3 Dopant on Energy Storage and Dielectric Relaxation
Properties of PMN-PMnN-PZT-Ce Piezoelectric Ceramics
ZHANG Hao, ZHENG Deyi, HU Shunmin, PENG Guigui, CHENG Cheng, ZHANG Jing
College of Materials and Metallurgy, Guizhou University, Guiyang 550000
下载:  全 文 ( PDF ) ( 1672KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 通过铌铁矿先驱法制备了Pb(Mg1/3Nb2/3)O3-Pb(Mn1/3Nb2/3)O3-PbZrO3-PbTiO3+0.3%CeO2(质量分数)+xSrCO3(PMN-PMnN-PZT-Ce-xSr,x=0.00,0.03,0.05,0.07)四元系压电陶瓷,研究了SrCO3含量的变化对Pb(Mg1/3Nb2/3)O3-Pb(Mn1/3-Nb2/3)O3-PbZrO3-PbTiO3+0.3%CeO2(质量分数)(PMN-PMnN-PZT-Ce)压电陶瓷相结构、储能密度以及弛豫行为的影响。通过XRD表明,样品为单一稳定的钙钛矿结构,并且存在准同晶界(MPB);当x=0.07时,在外加电场60 kV/cm下取得较好的储能性能:储能密度W1=0.31 J/cm3,储能效率η=0.47;通过修正Curie-Weise定律,较好地描述了陶瓷弥散相变的特征,弥散相变系数γ随着Sr2+掺杂量的增加而增加。当x=0.07时,γ取得最大值1.972 8,此时弛豫现象最明显。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张浩
郑德一
胡顺敏
彭贵贵
程程
张静
关键词:  压电陶瓷  相结构  储能性能  介电弛豫  弥散相变    
Abstract: A series of Pb(Mg1/3Nb2/3)O3-Pb(Mn1/3Nb2/3)O3-PbZrO3-PbTiO3+0.3%CeO2 (in mass fraction)+xSr (PMN-PMnN-PZT-Ce-xSr, x=0.00,0.03,0.05,0.07) ceramics were prepared by a columbite precursor method, and phase structures, energy-storage properties and relaxation behaviors of the as-prepared PMN-PMnN-PZT ceramics varied in SrCO3 contents were stu-died. According to the results by X-ray diffraction, all samples are a single perovskite phase and possess a morphotropic phase boundary (MPB). The sample with x=0.07 obtained satisfactory energy storage performance, as its energy storage density and energy storage efficiency were 0.31 J/cm3 and 0.47, respectively under 60 kV/cm electric field. A modified Curie-Weiss law can describe the diffuse phase transition properly, and when Sr addition increases the dispersion coefficient of phase transformation γ increases. The sample with x=0.07, γ reaches a maximum value of 1.972 8, indicating that the dielectric relaxation behavior of ceramic is more evident.
Key words:  piezoelectric ceramic    phase structure    energy-storage property    dielectric relaxation    diffuse phase transition
出版日期:  2017-03-25      发布日期:  2018-05-02
ZTFLH:  TB321  
基金资助: 国家自然科学基金(51202038);贵州省国际科技合作计划项目(黔科合外G字[2012]7010号);贵州省工业攻关项目(黔科合GY 字(2013) 3075)
通讯作者:  郑德一:男,1981年生,博士,副教授,主要从事功能材料的研究,E-mail:zhengdeyi@hotmail.com   
作者简介:  张浩:男,1989年生,硕士研究生,主要从事功能材料的研究,E-mail:haomrzhang@163.com
引用本文:    
张浩, 郑德一, 胡顺敏, 彭贵贵, 程程, 张静. SrCO3掺杂对PMN-PMnN-PZT-Ce压电陶瓷储能及介电弛豫性能的影响[J]. 《材料导报》期刊社, 2017, 31(6): 11-15.
ZHANG Hao, ZHENG Deyi, HU Shunmin, PENG Guigui, CHENG Cheng, ZHANG Jing. Effect of SrCO3 Dopant on Energy Storage and Dielectric Relaxation
Properties of PMN-PMnN-PZT-Ce Piezoelectric Ceramics. Materials Reports, 2017, 31(6): 11-15.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.06.003  或          https://www.mater-rep.com/CN/Y2017/V31/I6/11
1 Lin J H. Study on the piezoelectric properties and temperature stability of Sr dope PSN-PZN-PZT quaternary piezoelectric ceramics [J]. Piezoelectrics Acoustooptics,2011(6):961(in Chinese).
李建华. Sr掺杂四元系压电陶瓷压电性能研究[J].压电与声光,2011(6):961.
2 Correia T M, Mcmillen M, Rokosz M K, et al. A lead-free and high-energy density ceramic for energy storage applications[J].J Am Ceram Soc,2013,96(9):2699.
3 Hao X, Zhai J, Ling B K, et al. A comprehensive review on the progress of lead zirconate-based antiferroelectric materials [J]. Prog Mater Sci,2014,63(8):1.
4 Ma B, Kwon D K, Narayanan M, et al. Dielectric properties and energy storage capability of antiferroelectric Pb0.92La0.08Zr0.95Ti0.05-O3 film-on-foil capacitors[J]. J Mater Res,2009,24(24):2993.
5 Chen T, Wang J, Zhong X, et al. High energy density capacitors based on 0.88BaTiO3-0.12Bi(Mg 0.5,Ti0.5)O3/PbZrO3, multila-yered thin films[J]. Ceram Int,2014,40(4):5327.
6 Zhao Y, Hao X, Li M. Dielectric properties and energy-storage performance of (Na0.5Bi0.5)TiO3 thick films[J]. J Alloys Compd,2014,601:112.
7 Zhao Y, Hao X, Zhang Q. Energy-storage properties and electrocaloric effect of Pb(1-3x/2)LaxZr0.85Ti0.15O3 antiferroelectric thick films[J]. ACS Appl Mater Interfaces,2014,6(14):11633.
8 Yang Z P, Liu S H, Gao F, et al. Electro strictive properties and temperature stability of Pb(Mg1/3Nb2/3)O3-based composit relaxor ferroelectric ceramics[J]. J Mater Eng,2005(9):16(in Chinese).
杨祖培, 刘少恒, 高峰, 等. PMN基复相弛豫铁电陶瓷电致应变及其温度稳定性的研究[J]. 材料工程,2005(9):16.
9 Wang X, Zhang L, Hao X, et al. Dielectric properties and energy-storage performances of (1-x)Pb(Mg1/3Nb2/3)O3-xPbTiO3, rela-xor ferroelectric thin films[J].J Mater Sci Mater Electron,2015,26(12):9583.
10 Chauhan A, Patel S, Vaish R. Effect of directional mechanical confinement on the electrical energy storage density in 68Pb(Mn1/3-Nb2/3)O3-32PbTiO3 single crystals [J]. Ferroelectrics,2015,478(1):40.
11 Wu L. Core-satellite BaTiO3@SrTiO3 assemblies for a local compositionally graded relaxor ferroelectric capacitor with enhanced energy storage density and high energy efficiency[J]. J Mater Chem C,2014,3(4):750.
12 Dai Xiangfu. Electrocaloric effect and energy storage performance of (1-x)NBT-xST lead-free ceramics[D]. Harbin: Harbin Institute of Technology,2015(in Chinese).
戴祥福. (1-x)NBT-xST无铅陶瓷的电卡效应和储能性能[D]. 哈尔滨:哈尔滨工业大学,2015.
13 Fang B J, Du Q B, Zhou L M, et al. Development of perovskite structure and electrical properties of Pb(Zr1/2Ti1/2)O3-Pb(Ni1/3-Nb2/3)O3 system[J]. Eur Phys J Appl Phys,2010,51(1):1236.
14 Wang D, Cao M, Zhang S. Investigation of ternary system Pb(Sn,Ti)O3-Pb(Mg1/3Nb2/3)O3, with morphotropic phase boundary compositions[J]. J Eur Ceram Soc,2012,32(2):441.
15 Cheng R. High strain in (Bi1/2Na1/2)0.935Ba0.065TiO3-Sr3FeNb2O9 lead-free ceramics with giant piezoresponse [J]. RSC Adv,2015,110(5):90508.
16 钟维烈. 铁电体物理学[M]. 北京:科学出版社,1996:320
[1] 周创, 蔡苇, 陈大凯, 杨蕊如, 章恒, 陈刚. Tm3+对AgNbO3反铁电陶瓷微结构和储能性能的影响[J]. 材料导报, 2023, 37(6): 21090143-6.
[2] 郭登康, 郭耐, 傅峰, 杨昇, 李改云, 储富祥. 有机物改性增强木材物理力学性能的研究进展[J]. 材料导报, 2023, 37(22): 22020187-11.
[3] 宋牙牙, 黄艳斐, 郭伟玲, 邢志国, 王海斗, 吕振林, 张执南. 铌酸钾钠基无铅压电陶瓷掺杂改性的研究进展[J]. 材料导报, 2022, 36(5): 21030094-10.
[4] 唐明响, 陈良, 祁核, 孙胜东, 刘辉, 陈骏. 缺陷偶极子调控铅基钙钛矿压电陶瓷性能的研究进展[J]. 材料导报, 2022, 36(2): 20090329-6.
[5] 纪铭悦, 田晓, 刘昕瑀, 田璐, 杨艳春, 塔娜. 新型La-Mg-Ni系储氢合金相结构及其制备工艺研究进展[J]. 材料导报, 2022, 36(15): 21030222-10.
[6] 焦齐统, 潘炜, 朱帅, 陈翔宇, 杨宁, 陈建, 顾晨宇, 邱天, 刘晶晶. 相组成对La0.75Mg0.25Ni3.5储氢合金电化学性能的影响[J]. 材料导报, 2021, 35(6): 6140-6145.
[7] 韩志勇, 卢博文, 王仕成. Ni-Al-Pt粘结层的制备及微观组织演变分析[J]. 材料导报, 2021, 35(4): 4144-4149.
[8] 高妞, 刘鑫旺, 吴伟峰, 白朱成, 姚俊卿, 樊自田. 耐热高熵多主元合金及其强韧化研究现状[J]. 材料导报, 2021, 35(17): 17037-17042.
[9] 陈刚, 罗涛, 沈书成, 陶韬, 唐啸天, 薛伟. 难熔高熵合金的研究进展[J]. 材料导报, 2021, 35(17): 17064-17080.
[10] 褚涛, 王五松, 王学杰, 张田才, 杨桂, 翟继卫. 高机械品质因数压电陶瓷材料的研究进展及应用[J]. 材料导报, 2019, 33(z1): 165-170.
[11] 刘晓梅, 贺定勇, 周正, 王国红, 王曾洁, 吴旭. 微束等离子喷涂羟基磷灰石涂层相结构的微拉曼光谱研究[J]. 材料导报, 2019, 33(10): 1634-1639.
[12] 邓安强, 罗永春, 王浩, 赵磊, 罗元魁. 退火处理对A2B7型La0.63(Pr0.1Nd0.1Y0.6Sm0.1Gd0.1)0.2Mg0.17Ni3.1Co0.3Al0.1[J]. 材料导报, 2018, 32(15): 2565-2570.
[13] 尹奇异,田长安,胡舒婷,王成泽,王婷婷,阳杰,吉冬冬,刘洋. CeO2掺杂制备Ba0.9Ca0.1Ti1-xSnxO3压电陶瓷的结构及电性能[J]. 材料导报编辑部, 2017, 31(22): 26-29.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed