Please wait a minute...
材料导报编辑部  2017, Vol. 31 Issue (22): 35-42    https://doi.org/10.11896/j.issn.1005-023X.2017.022.008
  材料研究 |
基于毛竹半纤维素的银纳米粒子的绿色合成*
彭红,刘洋,张锦胜,郑洪立,阮榕生
南昌大学生物质转化教育部工程研究中心,南昌 330047
Green Synthesis of Silver Nanoparticles Based on Bamboo Hemicellulose
PENG Hong, LIU Yang, ZHANG Jinsheng, ZHENG Hongli, RUAN Rongsheng
Engineering Research Center of Biomass Conversion, Ministry of Education, Nanchang University, Nanchang 330047
下载:  全 文 ( PDF ) ( 967KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 直接以碱溶性毛竹半纤维素为稳定剂、葡萄糖为还原剂,在水介质中绿色合成银纳米粒子,讨论了合成条件对银纳米粒子的形成和储存稳定性的影响,表征了银纳米粒子-半纤维素复合物经热处理后获得的Ag-C复合物的物理化学特性,并讨论了银纳米粒子的可能形成机理。在恒定其他反应条件下,延长反应时间会有更多银纳米粒子生成,但过度延长反应时间会使银纳米粒子发生团聚而生成大颗粒的粒子;高的葡萄糖浓度、反应温度和初始半纤维素用量会加快银纳米粒子的生成。银纳米粒子的平均粒径和粒径分布范围均随半纤维素用量的增大而减小,而银纳米粒子在4 ℃的储存稳定性随半纤维素用量的增大而增强。银纳米粒子-半纤维素复合物在空气气氛中300 ℃热处理1 h后获得的Ag-C复合物中同时存在金属态的银和氧化态的银。半纤维素中呈电负性的大量自由羟基和少量羧基可能对银纳米粒子的形成起至关重要的作用。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
彭红
刘洋
张锦胜
郑洪立
阮榕生
关键词:  银纳米粒子  毛竹半纤维素  储存稳定性  Ag-C复合物  形成机理    
Abstract: Silver nanoparticles were green synthesized in aqueous medium using alkali bamboo (Phyllostachys pubescens Mazel) hemicellulose as stabilizer and glucose as reducing agent. The effect of reaction factors on the formation and storage stability of silver nanoparticles were discussed. The Ag-C compound formed after thermal treatment of silver nanoparticles-hemicellulose compound was characterized. When the other reaction factors were kept as constants, longer reaction time could result in the formation of more silver nanoparticles. However, much long reaction time could stimulate aggregation of silver nanoparticles to form large particles. High concentrations of glucose and hemicellulose, and also high reaction temperature accelerated the formation rate of silver nanoparticles. High amount of hemicellulose resulted in smaller average particle size and narrower range of particle size distribution. The storage stability of silver nanoparticles at 4 ℃ became stronger when higher amount of hemicellulose was added. The metallic silver and oxided silver coexisted in the Ag-C compound formed after silver nanoparticles-hemicellulose compound was treated at 300 ℃ for 1 h under air atmosphere. The electronegative groups including a large number of free hydroxyl groups and a small number of carboxyl groups in the hemicellulose may play an important role in the formation of silver nanoparticles.
Key words:  silver nanoparticles    bamboo hemicellulose    storage stability    Ag-C compound    formation mechanism
发布日期:  2018-05-08
ZTFLH:  O611.4  
  O614.122  
基金资助: *国家自然科学基金(21306076;21666022);江西省教育厅科学技术研究项目(GJJ150189);江西省2016年度研究生创新专项资金项目(YC2016-S054)
作者简介:  彭红:1978年生,博士,副研究员,主要研究方向为生物质资源的高值化转化利用E-mail:penghong@ncu.edu.cn
引用本文:    
彭红,刘洋,张锦胜,郑洪立,阮榕生. 基于毛竹半纤维素的银纳米粒子的绿色合成*[J]. 材料导报编辑部, 2017, 31(22): 35-42.
PENG Hong, LIU Yang, ZHANG Jinsheng, ZHENG Hongli, RUAN Rongsheng. Green Synthesis of Silver Nanoparticles Based on Bamboo Hemicellulose. Materials Reports, 2017, 31(22): 35-42.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.022.008  或          https://www.mater-rep.com/CN/Y2017/V31/I22/35
1 Chen Y Z, Gu X F, Jiang G M, et al. Preparation of silver nanoparticles for catalytic reduction of 4-nitroaniline[J]. J Nantong Univ(Nat Sci), 2013,12(1):45 (in Chinese).
陈玥竹,顾学芳,姜国民,等. 银纳米粒子的制备及对4-硝基苯胺的催化还原作用[J]. 南通大学学报(自然科学版), 2013,12(1):45.
2 Sun L, Liu A X, Huang H Y, et al. Preparation and antibacterial properties of water-soluble Ag nanoparticles[J]. Acta Phys-Chim Sin, 2011,27(3):722 (in Chinese).
孙磊,刘爱心,黄红莹,等. 水溶性银纳米颗粒的制备及抗菌性能[J]. 物理化学学报, 2011,27(3):722.
3 Li J H, Kuang D Z, Feng Y L, et al. Preparation of TNP electrochemical sensor based on silver nanoparticles/grapheme oxide nanocomposite[J]. Chin J Inorg Chem, 2013,29(6):1157(in Chinese).
李俊华,邝代治,冯泳兰,等. 基于银纳米粒子/氧化石墨烯复合薄膜制备TNP电化学传感器[J]. 无机化学学报,2013,29(6):1157.
4 Chen L M, Liu Y N. Surface-enhanced raman detection of melamine on silver-nano-particle-decorated silver/carbon nanospheres: Effect of metal ions[J]. Appl Mater Interfaces, 2011,3:3091.
5 Das S K, Bhattacharyya A J. Electrochemical performance of mixed crystallographic phase nanotebes and nanosheets of titania and titania-carbon/silver composites for lithium-ion batteries[J]. Mater Chem Phys, 2011,130(1-2):569.
6 Liu Y S, Chen S M, Zhong L, et al. Preparation of high-stable silver nanoparticle dispersion by using sodium alginate as a stabilizer under gamma radiation[J]. Radiat Phys Chem, 2009,78(4):251.
7 Zhang Q, Li N, Goebl J, et al. A systematic study of the synthesis of silver nanoparticles: Is citrate a “Magic” reagent?[J].J Am Chem Soc, 2011,133(46):18931.
8 Courrol L C, Silva F R D O, Gomes L. A simple method to synthesize silver nanoparticles by photo-reduction[J]. Colloid Surf A, 2007,305(1-3):54.
9 Zhang J, Zhang Y, Guo R, et al. Biosynthesis of silver nanoparticles using Trichoderma hamatum and antibacterial activity[J]. Microbiol China, 2016,43(2): 386 (in Chinese).
张杰,张映,郭瑞,等. 钩状木霉生物合成纳米银及其杀菌性能[J]. 微生物学通报, 2016,43(2):386.
10 Al-Thabaiti S A, Al-Nowaiser F M, Obaid A Y, et al. Formation and characterization of surfactant stabilized silver nanoparticles: A kinetic study[J]. Colloid Surf B, 2008,67(2):230.
11 Wang S, Bai J, Zhang X Q, et al. Preparation of polyvinylrrolidone/Ag nanoparticles/β-cyclodextrin composite nanofibers[J]. Fiber Res, 2011(5):16 (in Chinese).
王珊,白杰,张晓清,等.聚乙烯吡咯烷酮/银纳米粒子/β-环糊精复合纳米纤维的制备[J].合成纤维, 2011(5):16.
12 Amin M, Iram F, Iqbal M S, et al. Arabinoxylan-mediated synthesis of gold and silver nanoparticles having exceptional high stability[J]. Carbohydr Polym, 2013,92:1896.
13 Zaki S, EI Kady M F, Abd-EI-Haleem D. Biosynthesis and structural characterization of silver nanoparticles from bacterial isolates[J]. Mater Res Bull, 2011,46(10):1571.
14 Peng H, Yang A S, Xiong J H. Green, microwave-assisted synthesis of silver nanoparticles using bamboo hemicelluloses and glucose in an aqueous medium[J]. Carbohydr Polym, 2013,91(1-2):348.
15 Sun W J, Qu D, Chen Y, et al. Study on biosynthesis of silver nanoparticles using fagopyri dibotryis rhizoma extract and optimization of synthesis conditions[J]. China J Chin Mater Med, 2014,39(9):1597 (in Chinese).
孙文杰,瞿鼎,陈彦,等. 金荞麦银纳米粒的制备及其工艺优化研究[J]. 中国中药杂志, 2014,39(9):1597.
16 Jiang Z H, Yu W J, Yu Y L. Analysis of chemical components of bamboo wood and characteristic of surface performance[J]. J Northeast Forest Univ, 2006,34(4):1 (in Chinese).
江泽慧,于文吉,余养伦.竹材化学成分分析和表面性能表征[J].东北林业大学学报, 2006,34(4):1.
17 Peng H, Wang N, Hu Z R, et al. Physicochemical characterization of hemicelluloses from bamboo (Phyllostachys pubescens Mazel) stem[J]. Ind Crop Prod, 2012,37(1): 41.
18 Peng H, Zhang J S, Liu Y H, et al.Structural characterization of hemicellulosic polysaccharides isolated from bamboo (Phyllostachys pubescens Mazel)[J]. Curr Org Chem, 2012,16(16):1855.
19 Harish B S, Uppuluri K B, Anbazhagan V. Synthesis of fibrinolytic active silver nanoparticle using wheat bran xylan as a reducing and stabilizing agent[J]. Carbohydr Polym, 2015,132:104.
20 Shiny P J, Mukherjee A, Chandrasekaran N. DNA damage and mitochondria-mediated apoptosis of A549 lung carcinoma cells induced by biosynthesized silver and platinum nanoparticles[J]. RSC Adv, 2016,6(33):27775
21Natarajan K, Selvaraj S, Murty V R. Microbial production of silver nanoparticle[J]. Dig J Nanomater Biostruct, 2010,5:135.
22 Kleemann W. Random-field induced antiferromagnetic, ferroelectric and structural domain states[J]. Int J Mod Phys B, 1993,7(13):2469.
23 Abdel-Halim E E, Al-Deyab S S. Utilization of hydroxypropyl cellulose for green and efficient synthesis of silver nanoparticles[J]. Carbohydr Polym, 2011,86:1615.
24 Xia N X, Cai Y R, Jiang T, et al. Green synthesis of silver nanoparticles by chemical reduction with hyaluronan[J]. Carbohydr Polym, 2011,86:956.
25 Kelly K L, Coronado E, Zhao L L, et al. The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment[J]. J Phys Chem B, 2003,107(3):668.
26 Wang C L, Guan J, Tian F. Preparation of nano-silver by photo-reduction method using sodium alginate[J]. Mater Rev: Res, 2015,29(8):36(in Chinese).
王春来,关静,田丰. 海藻酸钠光化学还原法制备纳米银[J]. 材料导报:研究篇,2015,29(8):36.
27 Yu M, Liu P R, Sun Y J, et al. Fabrication and characterization of graphene-Ag nanoparticles composites[J]. J Inorg Mater, 2012,27(1):89 (in Chinese).
于美,刘鹏瑞,孙玉静,等. 石墨烯-银纳米粒子复合物材料的制备及表征[J]. 无机材料学报, 2012,27(1):89.
28 Dubey S P, Lahtinen M, Sillanp?? M. Tansy fruit mediated greener synthesis of silver and gold nanoparticles[J]. Process Biochem, 2010,45(7):1065.
29 Kong H, Jang J. One-step fabrication of silver nanoparticle embedded polymer nanofibers by radical-mediated dispersion polymerization[J]. Chem Commun, 2006,28:3010.
30 Cheng Y H, Li W Y, Fan X Z, et al. Modified multi-awlled carbon nanotube/Ag nanoparticle composite catalyst for the oxygen reduction reaction in alkaline solution[J]. Electrochim Acta, 2013,111:635.
31 Luo Y Q, Shen S Q, Luo J W, et al. Green synthesis of silver nanoparticles in xylan solution via tollens reaction and their detection for Hg2+[J]. Nanoscale, 2015,7:690.
32 Himmelhaus M, Gauss I, Buck M, et al. Adsorption of docosanethiol from solution on polycrystalline silver surfaces: An XPS and NEXAFS study[J]. J Electron Spectrosc, 1998,92:139.
33 Palacio C, Ocón P, Herrasti P, et al. XPS and ARXPS study of silver underpotential deposition on platinum in acid solution[J]. J Electroanal Chem, 2003,545:53.
34 Titantah J T, Lamoen D. Carbon and nitrogen 1s energy levels in amorphous carbon nitride systems: XPS interpretation using first-principles[J]. Diam Relat Mater, 2007,16:581.
35 Raveendran P, Fu J, Wallen S L. Completely “green” synthesis and stabilization of metal nanoparticles[J]. J Am Chem Soc, 2003,125:13940.
36Li S, Zhang Y Y, Xu X J, et al. Triple helical polysaccharide-induced good dispersion of silver nanoparticles in water[J]. Biomacromolecules, 2011,12(8): 2864.
[1] 石文天, 闫天明, 刘玉德, 李杰, 王林, 庞庆超. FRP制孔分层形成机理及抑制工艺方法研究[J]. 材料导报, 2023, 37(19): 22030127-7.
[2] 滕桂香, 杨怡凡, 侯苏童, 姚慧, 张春. 一步法制备PLA/PDA/Ag多孔抗菌纳米纤维膜及其
促进伤口愈合作用研究
[J]. 材料导报, 2023, 37(18): 23080053-6.
[3] 黄燕, 胡翔, 史才军, 吴泽媚. 混凝土中水泥浆体与骨料界面过渡区的形成和改进综述[J]. 材料导报, 2023, 37(1): 21050009-12.
[4] 王超, 陈琪, 肖述广, 董仕节, 谢志雄, 罗平, 解剑英. 316奥氏体不锈钢高频感应焊接技术及缺陷形成机理[J]. 材料导报, 2022, 36(19): 21020063-5.
[5] 陈姝敏, 吴迪, 何文浩, 陈勇. 银纳米粒子负载的石墨烯基环氧树脂复合材料的制备及性能[J]. 材料导报, 2020, 34(Z1): 503-506.
[6] 胡银春, 程一竹, 王仁虎, 殷萌, 魏延, 杜晶晶, 黄棣, 陈维毅. 静电纺Ag@MOF-5/β-CD抗菌纤维膜的制备及性能[J]. 材料导报, 2019, 33(22): 3825-3828.
[7] 周超极, 朱胜, 王晓明, 韩国峰, 周克兵, 徐安阳. 热喷涂涂层缺陷形成机理与组织结构调控研究概述[J]. 材料导报, 2018, 32(19): 3444-3455.
[8] 杨建明, 汤阳, 顾海, 刘永加, 黄大志, 陈劲松. 3D打印制备多孔结构的研究与应用现状[J]. 材料导报, 2018, 32(15): 2672-2683.
[9] 吕生华,罗潇倩,张 佳,高党国,孙 立,胡浩岩. 氧化石墨烯调控水泥基材料形成大规模规整结构及其性能表征[J]. 《材料导报》期刊社, 2017, 31(24): 10-14.
[10] 高宾, 张晓军. 水热法合成MoO3单晶纳米带及其形成机理*[J]. 《材料导报》期刊社, 2017, 31(2): 112-116.
[11] 刘林利, 侯延辉, 刘洋, 李博思, 闵梁, 钱宝舒. Al-Ti-Mg复合脱氧钢研究进展*[J]. 《材料导报》期刊社, 2017, 31(15): 81-86.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed