Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (20): 63-67    https://doi.org/10.11896/j.issn.1005-023X.2017.020.014
  材料研究 |
含Zr、Sc的Al-Zn-Mg-Cu合金的低周疲劳行为
张笑宇1,2, 冷利3, 王占军2
1 北京科技大学材料科学与工程学院,北京 100083;
2 北京机电研究所,北京 100083;
3 沈阳工业大学材料科学与工程学院,沈阳 110870
Low Cycle Fatigue Behavior of Al-Zn-Mg-Cu Alloy Containing Zr and Sc
ZHANG Xiaoyu1,2, LENG Li3, WANG Zhanjun2
1 School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083;
2 Beijing Research Institute of Mechanical & Electrical Technology, Beijing 100083;
3 School of Material Science and Engineering, Shenyang University of Technology, Shenyang 110870
下载:  全 文 ( PDF ) ( 1795KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 利用透射电子显微镜和低周疲劳试验机研究了单级时效状态及回归再时效状态两种含Zr、Sc的Al-Zn-Mg-Cu合金的微观组织和低周疲劳性能。结果表明:单级时效基体析出相以η′相为主,晶界析出连续分布平衡相,并伴有晶间无析出带;回归再时效基体析出相略有长大,晶界析出相长大明显,无析出带变宽。低周疲劳加载条件下,合金在0.4%~0.7%外加总应变幅范围内表现出循环稳定性;在0.8%的应变幅下,呈现先软化后硬化。在0.4%~0.6%较低的外加总应变幅范围内,回归再时效合金表现出较高的低周疲劳寿命。两种状态合金的塑性应变幅和弹性应变幅与载荷反向周次之间均成直线关系,并可分别用Coffin-Manson公式和Basquin公式来描述。两种状态的合金的疲劳裂纹均萌生于试样表面,并以穿晶方式扩展。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张笑宇
冷利
王占军
关键词:  Zr,Sc  Al-Zn-Mg-Cu  低周疲劳    
Abstract: The single stage aging and RRA treatment on both microstructure and fatigue properties of Al-Zn-Mg-Cu alloy with Zr and Sc content were investigated through the transmission electron microscope and the low-cycle fatigue tests. In the single aging treatment state, the major precipitates inside the grains are η′ phases, the discontinuous equilibrium phase precipitates at the grain boundaries, and there exist the precipitate free zones near the grain boundaries. For the alloy subject to RRA treatment state, the precipitates both inside the grains and at the grain boundaries obviously grow, and the precipitate free zone widens. Under the low-cycle fatigue loading condition, the alloy with different heat treatment states exhibits mainly the stable cyclic stress response behavior at the total strain amplitudes ranged from 0.4% to 0.7%. However, at the total strain amplitude of 0.8%, the alloy shows mostly the cyclic strain softening followed by the cyclic strain hardening. At the total strain amplitudes from 0.4% to 0.6%, the RRA treatment can effectively prolong the low-cycle fatigue lives of the alloy. The relationships between the plastic strain amplitude, elastic strain amplitude and reversals to failure are linear, and can be described separately with the Coffin-Manson formula and Basquin equations. In addition, the fatigue cracks initiate transgranularly at the free surface of fatigue samples and propagate transgranularly.
Key words:  Zr,Sc    Al-Zn-Mg-Cu    low cycle fatigue
出版日期:  2017-10-25      发布日期:  2018-05-05
ZTFLH:  TG146.2  
作者简介:  张笑宇:男,1987年生,博士研究生,从事热处理设备与工艺研究 E-mail:zxy_miss@163.com
引用本文:    
张笑宇, 冷利, 王占军. 含Zr、Sc的Al-Zn-Mg-Cu合金的低周疲劳行为[J]. 《材料导报》期刊社, 2017, 31(20): 63-67.
ZHANG Xiaoyu, LENG Li, WANG Zhanjun. Low Cycle Fatigue Behavior of Al-Zn-Mg-Cu Alloy Containing Zr and Sc. Materials Reports, 2017, 31(20): 63-67.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.020.014  或          https://www.mater-rep.com/CN/Y2017/V31/I20/63
1 Dursun T, Soutis C. Recent developments in advanced aircraft aluminum alloys[J]. Mater Des, 2014,56:862.
2 Gonzalo B, Jorge R G, José M. Recent developments in advanced aircraft aluminum alloys[J]. J Mater Eng Perform, 2009,18:1144.
3 Senkov O N, Shagiev M R, Senkova S V, et al. Precipitation of Al3-(Sc,Zr) particles in an Al-Zn-Mg-Cu-Sc-Zr alloy during conventional solution heat treatment and its effect on tensile properties[J]. Acta Mater, 2008,56(15):3723.
4 Zhang W, Xing Y, Jia Z H, et al. Effect of minor Sc and Zr addition on the microstructure and properties of ultra-high strength alloy[J]. Trans Nonferrous Metals Soc China, 2014,24:3866.
5 Dezecot S, Brochu M. Microstructural characterization and high cycle fatigue behavior of invesment cast A357 aluminum alloy[J]. Int J Fatigue, 2015,77:154.
6 Zupanc U, Grum J. Effect of pitting corrosion on fatigue perfor-mance of shot-peened aluminium alloy 7075-T651[J]. J Mater Processing Technol, 2010,210:1197.
7 Han S W, Katsumata K, Kumai S, et al. Effects of solidification structure and aging condition on cuclic stress-strain response in Al-7%Si-0.4%Mg cast alloys[J]. Mater Sci Eng A, 2002,337(1-2):170.
8 Michael D S, Hans J M, Huseyin S. Aphysically based fatigue mo-del for predicition of crack iniation form persistent slip bands in polycrystals[J]. Acta Mater, 2011,59(1):328.
9 Miao J, Pollock T M, Jones J W. Microstructural extremes and the transition from fatigue crack initiation to small crack growth in a polycrystalline nickel-base superalloy[J]. Acta Mater, 2012,60(6-7):2840.
10Kim S W, Han S W, Lee U J, et al. Effect of solidication structure on fatigue crack growth in rheocast and thixocast Al-Mg-Si alloys[J]. Mater Lett, 2004,58(1-2):257.
11Coffin L F. A study of the effects of cyclic thermal stresses on aductile metal[J]. Trans Am Soc Mech Eng, 1954,76:931.
12Adam N, Chalid E D, Heinz K, et al. New method for evaluation of the Manson-Coffin-Basquin and Ramberg-Osgood equations with respect to compatibility[J]. Int J Fatigue, 2008,30(10-11):1967.
13Dai X Y, Xia C Q, Long C G, et al. Morphology of primary Al3-(Sc, Zr) of as-cast Al-Zn-Mg-Cu-Zr-Sc alloys[J]. Rare Matal Mater Eng, 2011,40(2):265(in Chinese).
戴晓元, 夏长清, 龙春光, 等. Al-Zn-Mg-Cu-Zr-Sc合金铸态Al3(Sc,Zr)相形貌的研究[J].稀有金属材料与工程, 2011,40(2):265.
14Wu X M, Wang Z G, Li G Y. Cyclic deformation and strain burst behavior of Cu-7at.%Al and Cu-16at.% single crystals with diffe-rent orientations[J]. Mater Sci Eng A, 2001,314(1-2):39.
[1] 赵言, 唐建国, 张勇, 郑许, 赵辉. 应变速率对7065铝合金等温压缩软化机制的影响[J]. 材料导报, 2024, 38(8): 22080187-6.
[2] 毛江鸿, 薛倩倩, 张军, 罗林, 马佳星. 电化学修复后钢筋低周疲劳性能退化的时间效应及其影响[J]. 材料导报, 2022, 36(12): 21050263-7.
[3] 龚园军, 张军, 毛江鸿, 金伟良, 谭昱, 罗林. 电化学修复后不同含氢钢筋的低周疲劳性能试验研究[J]. 材料导报, 2021, 35(6): 6146-6150.
[4] 晁代义, 李昌龙, 赵佳蕾, 孙有政, 赵志国, 霍艳, 吕正风. 大尺寸Al-Zn-Mg-Cu铝合金铸锭均匀化工艺研究[J]. 材料导报, 2020, 34(Z1): 338-340.
[5] 晁代义, 孙有政, 刘晓滕, 李兴东, 李维建, 吕正风, 程仁策. Zn/Mg比及时效温度对Al-Zn-Mg-Cu系合金析出行为的影响[J]. 材料导报, 2019, 33(Z2): 398-401.
[6] 焦慧彬, 陈善达, 陈送义, 陈康华. Mn和Zr对Al-Zn-Mg-Cu铝合金各向异性的影响[J]. 材料导报, 2018, 32(6): 937-942.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed