Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (14): 153-157    https://doi.org/10.11896/j.issn.1005-023X.2017.014.032
  计算模拟 |
电加工8418钢的能量分配与表面粗糙度模型*
余剑武, 胡其丰, 段文, 何利华, 沈湘
湖南大学机械与运载工程学院, 长沙 410082;
Energy Distribution and Surface Roughness Model in EDM of 8418 Steel
YU Jianwu, HU Qifeng, DUAN Wen, HE Lihua, SHEN Xiang
College of Mechanical and Vehicle Engineering, Hunan University, Changsha 410082;
下载:  全 文 ( PDF ) ( 1407KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 针对电火花加工8418钢构建一种采用不同电极材料加工时的表面粗度模型。采用实验与有限元仿真分析相结合的手段,首先通过实验分别得到紫铜电极、CuW70电极加工8418钢的表面粗糙度Ra,然后采用ANSYS软件仿真分析单脉冲放电加工8418钢的电蚀凹坑半径与深度,结合表面粗糙度模型计算出仿真Ra,通过对比实验得到的表面粗糙度Ra,分析得出紫铜电极、CuW70电极加工8418钢时工件上的能量分配系数η分别为33%和24%。最后对能量分配系数和表面粗度模型进行了实验验证,通过误差分析,不同电极加工的表面粗糙度最大误差为9.59%,证明了能量分配系数和表面粗度模型是准确的。通过对比实验和分析结果,得出不同电极材料对能量分配系数的影响,同时随着脉冲放电能量的增加,η对凹坑半径与深度的影响增大,采用紫铜电极与CuW70电极加工8418钢时Ra差异增大。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
余剑武
胡其丰
段文
何利华
沈湘
关键词:  8418钢  表面粗糙度  电火花加工  能量分配系数  电极材料    
Abstract: The surface roughness model in EDM of 8418 steel machined by different electrode materials was established. By combination of experimental method and simulation analysis, surface roughness of 8418 steel was experimentally obtained from copper electrode and CuW70 electrode. Then the diameter and depth of single erosive crater was simulated by ANSYS software, and the surface roughness was calculated based on surface roughness model. By analyzing experimental and simulated roughness, energy distribution coefficient (η) of copper electrode and CuW70 electrode in EDM of 8418 steel could be obtained, which were 33% and 24%, respectively. Finally, energy distribution coefficient and surface roughness model were verified by a series of EDM experiments. The maximum error of surface roughness with different electrode materials was 9.59% by error analysis. It proved that energy distribution coefficient and surface roughness model were accurate. By comparing the experimental and analytical results, the effect of electrode material on energy distribution coefficient could be obtained. The effect of energy distribution coefficient η on the diameter and depth of erosive crater was enhanced with increasing discharge energy. Therefore, the difference between surface roughness using the copper electrode and CuW70 electrode became obvious.
Key words:  8418 steel    surface roughness    EDM    energy distribution coefficient    electrode material
出版日期:  2017-07-25      发布日期:  2018-05-04
ZTFLH:  TG661  
基金资助: *湖南省自然科学基金(2015JJ2026);国家自然科学基金(51275165)
作者简介:  余剑武:男,1968年生,博士,教授,主要研究方向为特种加工技术,精密与超精密加工技术与装备 E-mail:yokenbu@yahoo.com胡其丰:男,1991年生,硕士研究生,研究方向为特种加工技术 E-mail:395137008@qq.com
引用本文:    
余剑武, 胡其丰, 段文, 何利华, 沈湘. 电加工8418钢的能量分配与表面粗糙度模型*[J]. 《材料导报》期刊社, 2017, 31(14): 153-157.
YU Jianwu, HU Qifeng, DUAN Wen, HE Lihua, SHEN Xiang. Energy Distribution and Surface Roughness Model in EDM of 8418 Steel. Materials Reports, 2017, 31(14): 153-157.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.014.032  或          https://www.mater-rep.com/CN/Y2017/V31/I14/153
1 Taylan Altana, Blaine Lillyb, Yen Y C, et al. Manufacturing of dies and molds [J]. CIRP Annals-Manufacturing Technol,2001,50(2):404.
2 Wen Wu, Wang Xibin, et al. EDM of oil supply tank with multi-curvature and design of accurate assembly electrode [J]. China Mechan Eng,2009,20(8):946(in Chinese).
文武, 王西彬, 等. 多曲率油槽电火花成形加工及精密组合电极的设计[J]. 中国机械工程,2009,20(8):946.
3 Xie B C, Wang Y K, Wang Z L, et al. Numerical simulation of titanium alloy machining in electric discharge machining process[J]. Trans Nonferrous Metals Soc China,2011,21(21):434.
4 Xue R, Gu L, Yang K, et al. Energy distribution and material erosion model in near-dry electrical discharge milling[J]. J Mech Eng,2012,48(21):175(in Chinese).
薛荣, 顾琳, 杨凯,等. 喷雾电火花铣削加工的能量分配与材料蚀除模型[J]. 机械工程学报,2012,48(21):175.
5 Xia H, Kunieda M, Nishiwaki N. Removal amount difference between anode and cathode in EDM process[J]. Int J Electr Machining,1996,1:45.
6 Wang Xuyue, Hu Hui, Liang Yande, et al. Finite element simulation of small-hole on titanium alloy drilled by EDM[J]. China Mech Eng,2013,24(13):1738(in Chinese).
王续跃, 胡辉, 梁延德, 等. 钛合金小孔电火花加工有限元仿真研究[J]. 中国机械工程,2013,24(13):1738.
7 Shabgard M, Oliaei S N B, et al. Experimental investigation and 3D finite element prediction of the white layer thickness, heat affected zone, and surface roughness in EDM process [J]. J Mech Sci Technol,2011,25(12):3173.
8 Salonitis K, Stournaras A, Stavropoulos P, et al. Thermal modeling of the material removal Rate and surface roughness for die-sinking EDM[J]. Int J Adv Manuf Technol,2009,40(3-4):316.
9 MaRafona J,Chousal J A G. A finite element model of EDM based on Joule effect[J].Int J Machine Tools Manuf,2006,46(6):595.
10 Bragança I M F, Ribeiro G R, Rosa P A R, et al. Prototype machine for micro-EDM[M].London:Springer,2013:153.
11 Di Bitonto, Daryl D Eubank, Philip T Patel, et al. Theoretical mo-dels of the electrical discharge machining process. Ⅰ. A simple cathode erosion model [J]. J Appl Phys,1989,66(9):4095.
12 Ikai T, Hashingushi K. Heat input for crater formation in EDM[C]∥Proc. Int. Symp. for Electro Machining-ISEM XI,EPFL.Lausanne, Switzerland,1995:163.
13 Yu Jianwu, Duan Wen, He Lihua, et al. Experimental investigation of CuW70 copper-tungsten electrode wear [J]. Mech Sci Technol Aerospace Eng,2015,34(7):1016(in Chinese).
余剑武, 段文, 何利华, 等. CuW70铜钨电极损耗试验研究[J]. 机械科学与技术,2015,34(7):1016.
[1] 井文昌, 张志鸿, 刘香琛, 吴云翼, 李宝让. 新型液态金属电池材料体系及其相关技术的研究与进展[J]. 材料导报, 2025, 39(1): 23090098-17.
[2] 王洪雷, 牛彩云, 朱宏跃, 李晓明, 周丹, 孙志刚, 胡季帆, 杨昌平. NiFe2O4/rGO电极材料的制备及电催化HMF氧化性能研究[J]. 材料导报, 2024, 38(14): 23110252-6.
[3] 江志威, 刘呈坤, 吴红, 毛雪. 静电纺柔性超级电容器电极材料的研究进展[J]. 材料导报, 2023, 37(5): 21040283-13.
[4] 白小杰, 宋生南, 卓祖优, 刘海雄, 陈燕丹. 丝瓜络基3D多级孔结构掺氮活性炭的制备及储能特性[J]. 材料导报, 2023, 37(5): 21080011-7.
[5] 郑德勇, 晋慧慧, 姬鹏霞. Co3S4电极材料的制备及在碱性析氢反应中的重构行为研究[J]. 材料导报, 2023, 37(18): 22040230-4.
[6] 郭明荣, 鲁艳军, 陈润华. 石英玻璃微流道超声振动磨削加工及流动阻力特性研究[J]. 材料导报, 2023, 37(17): 22040004-7.
[7] 孟兆通, 张昌海, 迟庆国, 张天栋. 固体绝缘材料中空间电荷的主要影响因素及抑制方法[J]. 材料导报, 2023, 37(1): 21040316-9.
[8] 赵磊, 彭元佑, 李媛, 张倩倩, 冉奋. 聚乙二醇分子刷接枝改性碳微球及其电化学性能[J]. 材料导报, 2022, 36(21): 21080112-7.
[9] 牛晓勤, 康小雅, 马应霞, 王嘉伟, 陈新权, 田虎, 陈玉红, 冉奋. 新型球状Ni/Co-MOFs电极材料的构筑及电化学性能研究[J]. 材料导报, 2022, 36(14): 21050021-7.
[10] 李凯旋, 王焕磊. 生物多糖衍生的超级电容器用碳电极材料研究进展[J]. 材料导报, 2022, 36(1): 20080007-13.
[11] 周强, 田业冰, 于宏林, 范增华, 钱乘, 孙志光. 超粗糙氧化锆复合陶瓷磁性剪切增稠光整加工特性[J]. 材料导报, 2021, 35(z2): 97-100.
[12] 金贺荣, 张钊瑞, 韩民峰, 井士涛, 赵丁选. 表面粗糙度对热轧不锈钢复合板界面质量的影响[J]. 材料导报, 2021, 35(8): 8151-8156.
[13] 金鑫源, 兰亮, 何博, 朱奥迪, 高双. 选区激光熔化成形金属零件表面粗糙度研究进展[J]. 材料导报, 2021, 35(3): 3168-3175.
[14] 高君华, 黄浩, 曾冲, 郑瑞伦. 孔隙率对传感器多孔电极材料导电性能的影响[J]. 材料导报, 2021, 35(18): 18018-18023.
[15] 孙丹, 李伟, 刘峥. 二维纳米材料MXene及其在锂离子电池中的应用研究进展[J]. 材料导报, 2021, 35(15): 15047-15055.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed