Please wait a minute...
材料导报  2025, Vol. 39 Issue (22): 24110126-12    https://doi.org/10.11896/cldb.24110126
  金属与金属基复合材料 |
小口径油气管道在线内检测的研究进展
张佳1,2,*, 秦林1,2, 孙明楠1,2, 刘畅1,2, 林冬1,2, 赵帅1,2, 唐洪3
1 中国石油西南油气田公司安全环保与技术监督研究院,成都 610041
2 国家能源高含硫气藏开采研发中心,成都 610000
3 中国石油西南油气田物资分公司质量安全环保部,成都 610031
Research Progress of Small-diameter Pipelines In-line Inspection
ZHANG Jia1,2,*, QIN Lin1,2, SUN Mingnan1,2, LIU Chang1,2, LIN Dong1,2, ZHAO Shuai1,2, TANG Hong3
1 Safety, Environment and Technology Supervision Research Institute of PetroChina Southwest Oil and Gas Field Company, Chengdu 610041, China
2 China National Energy R&D Center of High Sulfur Gas Exploitation, Chengdu 610000, China
3 Quality, Safety and Environmental Protection Department, PetroChina Southwest Oil & Gas Field Materials Branch, Chengdu 610031, China
下载:  全 文 ( PDF ) ( 53487KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 小口径管道作为油气田地面集输系统的重要组成部分,具有管内空间小、管网结构复杂、建设水平各异、管径/压力差异大、介质种类繁多等特点,一直以来缺乏成熟的检测手段。作为保障管道安全的有效方式,内检测技术(In-line inspection,ILI)已得到广泛认可,它能够精准识别和定位管道缺陷位置,同时可以提供关于管道缺陷量化等信息。目前各类内检测技术在大口径管道(DN>200 mm)中具有良好的适应性,然而,由于小口径(DN≤200 mm)管道空间限制,现有通用内检测器需要在比常规管道更小的空间内布局探头、钢刷和皮碗等结构,存在检测器卡堵风险大、缺陷检出率和量化精度低等问题。特别是,在小口径管道漏磁检测器的研发中,检测器的通过性和数据质量之间存在一定的技术矛盾,对于高分辨率内检测器所需部件的机械和电子结构设计构成了额外的挑战。本文在总结管道内检测技术研究现状基础上,聚焦于小口径管道内检测器的研发难点,提出优化改进建议。研究成果对进一步优化小口径管道内检测技术、提高检测器性能和确保管道安全运行具有重要的科学意义和应用价值。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张佳
秦林
孙明楠
刘畅
林冬
赵帅
唐洪
关键词:  小口径管道  集输系统  内检测  腐蚀缺陷  漏磁检测    
Abstract: Small-diameter pipelines, as a vital component of the oil & gas field surface gathering system, are characterized by limited internal space, complex pipeline networks, varying construction standards, significant differences in pipe diameter and pressure, and a wide range of transported media. These characteristics have led to a lack of mature inspection methods for such pipelines. As an effective means of ensuring pipeline safety, in-line inspection (ILI) technology has gained widespread recognition. ILI allows for accurate identification and localization of pipeline defects and provides valuable information such as defect quantification. Currently, various ILI techniques exhibit good adaptability in large-diameter pipelines (DN >200 mm). However, due to the spatial constraints of small-diameter pipelines (DN≤200 mm), existing universal ILI tools need to accommodate components such as sensors, brushes, and cups within much smaller spaces. These result in poor pipeline passability, low defect detection rates, and reduced quantification accuracy. Specifically, in the development of magnetic flux leakage (MFL) ILI tools for small-diameter pipelines, there is a technical conflict between tool passability and data quality, which presents additional challenges in the mechanical and electronic design of high-resolution ILI tools. Based on a review of the current state of research in pipeline ILI technologies, this summary focuses on the development challenges of small-diameter pipeline ILI tools and proposes optimization and improvement suggestions. The research findings are of significant scientific and practical value for further optimizing small-diameter pipeline ILI technology, enhancing equipment performance, and ensuring the safe operation of pipelines.
Key words:  small-diameter pipelines    gathering and transportation system    in-line inspection    corrosion defects    magnetic flux leakage
出版日期:  2025-11-25      发布日期:  2025-11-14
ZTFLH:  TG115.28  
基金资助: 中石油西南油气田博士后项目(2024D105-01-02)
通讯作者:  *张佳,博士。主要研究领域为电磁无损检测、管道完整性和复杂环境下管道智能检测机器人等。zhangjia92@petrochina.com.cn   
引用本文:    
张佳, 秦林, 孙明楠, 刘畅, 林冬, 赵帅, 唐洪. 小口径油气管道在线内检测的研究进展[J]. 材料导报, 2025, 39(22): 24110126-12.
ZHANG Jia, QIN Lin, SUN Mingnan, LIU Chang, LIN Dong, ZHAO Shuai, TANG Hong. Research Progress of Small-diameter Pipelines In-line Inspection. Materials Reports, 2025, 39(22): 24110126-12.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24110126  或          https://www.mater-rep.com/CN/Y2025/V39/I22/24110126
1 Guan L W, Cong X D, Zhang Q, et al. Micromachines, 2020, 11(9), 840.
2 Zhang J, Lian Z H, Zhou Z M, et al. Journal of Loss Prevention in the Process Industries, 2023, 82(2023), 105006.
3 Parlak B O, Yavasoglu H A. Sustainability, 2023, 15(3), 2783.
4 Zhang J, Sun M N, Qin L, et al. International Journal of Pressure Vessels and Piping, 2024, 214(2025), 105409.
5 Ma Q P, Tian G Y, Zeng Y L, et al. Sensors, 2021, 21(11), 3862.
6 Vanaei H R, Eslami A, Egbewande A. International Journal of Pressure Vessels and Piping, 2017, 149(2017), 43.
7 Iqbal H, Tesfamariam S, Haider H, et al. Structure and Infrastructure Engineering, 2017, 13(6), 794.
8 Hameed H, Bai Y, Ali L. Ships and offshore structures, 2021, 16(7), 687.
9 Quej-Ake L M, Rivera-Olvera J N, Domínguez-Aguilar Y R, et al. Materials, 2020, 13(24), 5771.
10 Li J, Chen S L, Huang X J, et al. Chinese Journal of Scientific Instrument, 2016, 37(8), 1747(in Chinese).
李健, 陈世利, 黄新敬, 等. 仪器仪表学报, 2016, 37(8), 1747.
11 Ho M, El-Borgi S, Patil D, et al. Structural Health Monitoring, 2020, 19(2), 606.
12 Coramik M, Ege Y. Measurement, 2017, 111(2017), 359.
13 Peng L S, Huang S L, Wang S, et al. IEEE Transactions on Instrumentation and Measurement, 2021, 70(2021), 1.
14 Sophian A, Tian G Y, Fan M B. Chinese Journal of Mechanical Engineering, 2017, 30(3), 500.
15 Ho M, El-Borgi S, Patil D, et al. Structural Health Monitoring, 2020, 19(2), 606.
16 Zang X L, Xu Z D, Lu H F, et al. International Journal of Pressure Vessels and Piping, 2023, 206(2023), 105033.
17 Ling J T, Feng K, Wang T, et al. IEEE Transactions on Instrumentation and Measurement, 2023, 72(2023), 1.
18 Feng Y J, Zhang L B, Zheng W P. NDT & E International, 2018, 98(2018), 123.
19 Liu B, Tian R F, Yu H, et al. Engineering Failure Analysis, 2024, 159(2024), 108145.
20 Huang J, Chen P C, Li R, et al. Sensors, 2024, 24(9), 2699.
21 Li J Y, Zhang L B, Zheng P W. Journal of Taiyuan University of Technology, 2024,10. 16355/j. tyut. 1007. 20230748, 1(in Chinese).
李建宇, 张来斌, 郑文培. 太原理工大学学报, 2024, 10. 16355/j. tyut. 1007. 20230748, 1.
22 Duan J Y, Song K, Xie W Y, et al. Energies, 2022, 15(14), 4965.
23 Augustyniak M, Usarek Z. Journal of Nondestructive Evaluation, 2016, 35(2016), 1.
24 Wu Z P, Xuan W B, Dai L S, et al. Oil & Gas Storage and Transportation, 2020, 39(11), 1219(in Chinese).
吴志平, 玄文博, 戴联双, 等. 油气储运, 2020, 39(11), 1219.
25 Song H D, Xiao Q, Wang G, et al. IEEE Transactions on Instrumentation and Measurement, 2023, 72(2023), 1.
26 Ru G G, Gao B, Tang Q, et al. IEEE Transactions on Instrumentation and Measurement, 2023, 72(2023), 6009815.
27 Peng Y S. Theory and system research on precise quantitative recognition of steel tube's small defects using magnetic flux leakage testing method. Ph. D. Thesis, Tianjin University, China, 2005(in Chinese).
彭永胜. 基于漏磁检测机理的钢管小缺陷精确量化识别理论及系统研究. 博士学位论文, 天津大学, 2005.
28 Li R. Oil & Gas Storage and Transportation, 2024, 43(3), 241(in Chinese).
李睿. 油气储运, 2024, 43(3), 241.
29 Huang S L, Peng L S, Sun H Y, et al. Energies, 2023, 16(3), 1372.
30 Afzal M, Udpa S. NDT & E International, 2002, 35(7), 449.
31 Han W H, Que P. Measurement, 2006, 39(7), 621.
32 Mukhopadhyay S, Srivastava G P. NDT & E International, 2000, 33(1), 57.
33 Kathirmani S, Tangirala A K, Saha S, et al. NDT & E International, 2012, 50(2012), 1.
34 Ji F Z, Sun S Y, Wang C L, et al. Insight-Non-Destructive Testing and Condition Monitoring, 2010, 52(1), 16.
35 Mao B Y, Lu Y, Wu P L, et al. Intelligent Service Robotics, 2014, 7(2014), 203.
36 Chen L, Li X B, Qin G X, et al. Russian Journal of Nondestructive Testing, 2008, 44(2008), 859.
37 Liu B, Wu Z H, Wang P, et al. Energy Reports, 2023, 9(2023), 5899.
38 Feng J, Li F M, Lu S X, et al. IEEE Transactions on Instrumentation and Measurement, 2017, 66(7), 1883.
39 Jiang L, Zhang H G, Liu J H, et al. IEEE Transactions on Instrumentation and Measurement, 2023, 72(2023), 1.
40 Shen Y, Zhou W. International Journal of Pressure Vessels and Piping, 2024, 207(2024), 105123.
41 Liu W L, Ren L M, Tian G S. Sensors, 2024, 24(20), 6623.
42 Wang L, Zhang H G, Liu J H, et al. IEEE Transactions on Industrial Electronics, 2022, 70(9), 9550.
43 Sun H Y, Peng L S, Huang S L, et al. IEEE Transactions on Industrial Informatics, 2021, 18(3), 1629.
44 Chen J. ACES Journal, 2021, 32(9), 826.
45 Gao P F, Geng H, Yang L J, et al. Sensors, 2023, 23(13), 6221.
46 Zhang H G, Wang L, Wang J F, et al. IEEE Transactions on Instrumentation and Measurement, 2022, 71(2022), 1.
47 Li F M, Feng J, Zhang H G, et al. IEEE Transactions on Instrumentation and Measurement, 2018, 67(9), 2200.
48 Li F M, Feng J, Liu J H, et al. Insight-Non-Destructive Testing and Condition Monitoring, 2016, 58(7), 380.
49 Piao G Y, Guo J B, Hu T H, et al. NDT & E International, 2019, 103(2019), 26.
50 Chen J J, Huang S L, Zhao W. IET Science, Measurement & Technology, 2015, 9(4), 418.
51 Priewald R H, Magele C, Ledger P D, et al. IEEE Transactions on Magnetics, 2012, 49(1), 506.
52 Wang P, Gao Y L, Tian G Y, et al. NDT & E International, 2014, 64(2014), 7.
53 Lu S X, Feng J, Li F M, et al. IEEE Transactions on Magnetics, 2016, 53(4), 1.
54 Du Z Y, Ruan J J, Peng Y, et al. IEEE Transactions on Magnetics, 2008, 44(6), 1642.
55 Mandayam S, Udpa L, Udpa S S, et al. IEEE Transactions on Magnetics, 1996, 32(3), 1577.
56 Mandayam S, Udpa L, Udpa S S, et al. Research in Nondestructive Eva-luation, 1996, 8(1996), 233.
57 Shin Y K. IEEE Transactions on Magnetics, 1997, 33(2), 2127.
58 Li Y, Tian G Y, Ward S. NDT & E International, 2006, 39(5), 367.
59 Wu J B, Kang Y H, Tu J, et al. International Journal of Applied Electromagnetics and Mechanics, 2014, 45(1-4), 193.
60 Wu J B, Fang H, Wang J, et al. International Journal of Applied Electromagnetics and Mechanics, 2016, 52(3-4), 1007.
61 Wu J B, Kang Y H, Sun Y H, et al. Journal of Mechanical Engineering, 2013, 49(22), 41(in Chinese).
伍剑波, 康宜华, 孙燕华, 等. 机械工程学报, 2013, 49(22), 41.
62 Wu J B, Wang J, Kang Y H, et al. Journal of Mechanical Engineering, 2015, 51(18), 7(in Chinese).
伍剑波, 王杰, 康宜华, 等. 机械工程学报, 2015, 51(18), 7.
63 Gao Y L, Wang P, Tian G Y, et al. Nondestructive Testing, 2013, 35(10), 53(in Chinese).
高运来, 王平, 田贵云, 等. 无损检测, 2013, 35(10), 53.
64 Nestleroth J B, Davis R J. NDT & E International, 2007, 40(1), 77.
65 Usarek Z, Chmielewski M, Piotrowski L. Journal of Nondestructive Eva-luation, 2019, 38(2019), 1.
66 Jiao D K, Gao B, Ru G G, et al. IEEE Sensors Journal, 2024, 24(14), 22745.
67 Xie S J, Duan Z R, Li J, et al. Sensors and Actuators A, Physical, 2020, 309(2020), 112030.
68 Tian G Y, Yang C R, Lu X L, et al. NDT & E International, 2023, 138(2023), 102888.
69 Ma Q P, Tian G Y, Gao B, et al. NDT & E International, 2022, 132(2022), 102724.
70 Nestleroth J B, Davis R J. NDT & E International, 2007, 40(1), 77.
71 Piao G Y, Guo J B, Hu T H, et al. Sensors and Actuators A, Physical, 2019, 295(2019), 244.
72 She S B, Chen Y F, He Y Z, et al. Measurement, 2021, 168(2021), 108306.
73 Zeng Z W, Wang T, Sun L, et al. IEEE Transactions on Magnetics, 2015, 51(10), 1.
74 Tian G Y, Sophian A. NDT & E International, 2005, 38(1), 77.
75 Liu Z S, Li Y, Ren S T, et al. Journal of Electronic Measurement and Instrumentation, 2021, 35(9), 170(in Chinese).
刘正帅, 李勇, 任淑廷, 等. 电子测量与仪器学报, 2021, 35(9), 170.
76 Shin Y K, Choi D M, Kim Y J, et al. NDT & E International, 2009, 42(3), 215.
77 Chen T L, Tian G Y, Sophian A, et al. NDT & E International, 2008, 41(6), 467.
78 He Y Z, Tian G Y, Zhang H, et al. IEEE Sensors Journal, 2012, 12(6), 2113.
79 Zhou D Q, Wang J, He Y Z, et al. Sensors and Actuators A, Physical, 2016, 248(2016), 162.
80 Tian G Y, Sophian A. NDT & E International, 2005, 38(4), 319.
81 Chen Z, Rebican M, Miya K, et al. Research in Nondestructive Evaluation, 2005, 16(1), 35.
82 Zhou J W, Lugg M C, Collins R. International Journal of Applied Electromagnetics and Mechanics, 1999, 10(3), 221.
83 Lewis A M, Michael D H, Lugg M C, et al. Journal of Applied Physics, 1988, 64(8), 3777.
84 LeTessier R, Coade R W, Geneve B. International Journal of Pressure Vessels and Piping, 2002, 79(8), 549.
85 Rowshandel H, Nicholson G L, Davis C L, et al. In,Conference record of the 5th IET conference on railway condition monitoring and Non-Destructive testing (RCM 2011). Derby, 2011, pp.1.
86 Yuan X A, Li W, Qi C C, et al. Journal of China University of Petroleum(Edition of Natural Science), 2020, 44(6), 109(in Chinese).
袁新安, 李伟, 齐昌超, 等. 中国石油大学学报(自然科学版), 2020, 44(6), 109.
87 Zhang J, Zhou Z M, Lian Z H, et al. Chinese Journal of Engineering Design, 2023, 30(3), 372(in Chinese).
张佳, 周兆明, 练章华, 等. 工程设计学报, 2023, 30(3), 372.
88 Zhou Z M, Zhang J, Gu C L. Journal of Safety Science and Technology, 2018, 14(12), 146(in Chinese).
周兆明, 张佳, 谷翠琳. 中国安全生产科学技术, 2018, 14(12), 146.
89 Zheng L H, Ren S K, Wang J L. Measurement & Control Technology, 2020, 39(5), 80(in Chinese).
郑玲慧, 任尚坤, 王景林. 测控技术, 2020, 39(5), 80.
90 Hu X C, Luo F L, He Y Z, et al. Journal of Mechanical Engineering, 2011, 47(4), 17(in Chinese).
胡祥超, 罗飞路, 何赟泽, 等. 机械工程学报, 2011, 47(4), 17.
91 Ge J H, Li W, Chen G M, et al. Measurement Science and Technology, 2017, 29(1), 015601.
92 Grimberg R, Udpa L, Savin A, et al. Research in Nondestructive Evaluation, 2005, 16(2), 79.
93 Li W, Chen G M, Ge J H, et al. NDT & E International, 2016, 79(2016), 123.
94 Zhao S X. Research on inner wall defect detection technology for marine pipelines based on ACFM. Ph. D. Thesis, Harbin Engineering University, China, 2023 (in Chinese).
赵述祥. 基于ACFM的海洋管道内壁缺陷检测技术研究. 博士学位论文, 哈尔滨工程大学, 2023.
95 Jing H Q, Li Y, Zhang X Y, et al. Chinese Journal of Applied Mechanics, 2018, 35(5), 938 (in Chinese).
敬好青, 李勇, 张曦郁, 等. 应用力学学报, 2018, 35(5), 938.
96 Li W, Wang Z R, Yin X K, et al. IEEE Sensors Journal, 2022, 23(9), 9820.
97 Song H D, Xiao Q, Wang G, et al. IEEE Transactions on Instrumentation and Measurement, 2023, 72(2023), 1.
98 Huang S L, Wang Z, Wang S, et al. Review of Scientific Instruments, 2021, 92(2), 025006.
99 Xie S J, Tian M M, Xiao P, et al. NDT & E International, 2017, 86(2017), 153.
100 Wang W M, Wang X H, Zhang S M, et al. Oil & Gas Storage and Transportation, 2014, 33(1), 5 (in Chinese).
王文明, 王晓华, 张仕民, 等. 油气储运, 2014, 33(1), 5.
101 Wang B. Design and research of internal inspection system for conti-nuous thickness measurement of industrial pipes based on electromagnetic ultrasonic. Master's Thesis, Nanchang Hangkong University, China, 2024 (in Chinese).
王博. 基于电磁超声的工业管道连续测厚内检测系统设计与研究. 硕士学位论文, 南昌航空大学, 2024.
102 Zhang J, Wen M, Lin D, et al. Engineering Failure Analysis, 2024, 161(2024), 108300.
103 Maxfield K. In:Conference Record of the 34th Pipeline Pigging and Integrity Management Conference. Houston, 2022, pp.1.
104 Zang Y X, Yang B L, Ma N, et al. Oil & Gas Storage and Transportation, 2016, 35(11), 1222(in Chinese).
臧延旭, 杨博霖, 马宁, 等. 油气储运, 2016, 35(11), 1222.
105 Shen J Y, Xiong Z K, Zhang X, et al. Nondestructive Testing, 2022, 44(3), 27(in Chinese).
沈佳园, 熊治坤, 张响, 等. 无损检测, 2022, 44(3), 27.
106 Fu D R, Yang H, Xiao C H. Nondestructive Testing, 2015,37(7), 50(in Chinese).
傅丹蓉, 杨寒, 肖春辉. 无损检测, 2015, 37(7), 50.
107 Zhang Z H, Sun Y J, Yang T, et al. Chemical Engineering of Oil & Gas, 2020, 49(1), 93(in Chinese).
张志浩, 孙银娟, 杨涛, 等. 石油与天然气化工, 2020, 49(1), 93.
108 Ru G G, Zeng Y, Gao B, et al. China Measurement & Test, 2024, 50(1), 88(in Chinese).
汝改革, 曾熠, 高斌, 等. 中国测试, 2024, 50(1), 88.
109 Zhang J W, Zhao H. Journal of Chongqing University of Technology(Natural Science), 2022, 36(11), 312(in Chinese).
张佳伟, 赵弘. 重庆理工大学学报(自然科学), 2022, 36(11), 312.
[1] 赵帅, 文绍牧, 廖柯熹, 秦林, 林冬, 高健. 无损检测技术在高含硫天然气管道中的应用研究进展[J]. 材料导报, 2025, 39(9): 24030169-9.
[2] 崔巍, 张煜杭, 张强, 冯子明. 考虑流体渗透压力的管道焊缝内裂纹扩展流固磁耦合方法[J]. 材料导报, 2019, 33(6): 1036-1041.
[3] 崔巍, 王珂, 姜民政, 马春阳, 冯子明, 冷建成. 管道焊缝裂纹扩展的流固磁耦合表征[J]. 材料导报, 2018, 32(16): 2852-2858.
[1] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[2] WU Wei, CHEN Shiying, ZONG Mengjingzi. Dielectric Properties and Thermal Stability of Nano-Al2O3/Polyether Sulfone-epoxy Resin Composites[J]. Materials Reports, 2017, 31(20): 21 -24 .
[3] MO Peicheng, WU Yi, YU Wenlin, WANG Jilin, ZOU Zhengguang, ZHONG Shenglin, WANG Peng. In Situ Synthesis of PcBN Composites by cBN-Ti-Al-Si and Their Mechanical Property[J]. Materials Reports, 2018, 32(14): 2355 -2359 .
[4] HU Yaoqiang, CHEN Fajin, LIU Haining, ZHANG Huifang, WU Zhijian, YE Xiushen. Preparation of Poly(N-isopropylacrylamide) Hydrogel and Its Thermally Induced Aggregation Behavior[J]. Materials Reports, 2018, 32(14): 2491 -2496 .
[5] SONG Gang, CHI Jiayu, YU Jingwei, LIU Liming. Corrosion Behavior of Mg-steel Laser-TIG Hybrid Welding Joint[J]. Materials Reports, 2018, 32(16): 2773 -2777 .
[6] HUANG Hui, HAN Jianfeng, WANG Yishun, XIA Yang, ZHANG Jun, GAN Yongping, LIANG Chu, ZHANG Wenkui. Supercritical CO2 Assisting Cladding of LiMnPO4 on the Surface of Li[Li0.2-Mn0.54Co0.13Ni0.13]O2 and Its Electrochemical Properties[J]. Materials Reports, 2018, 32(23): 4072 -4078 .
[7] WANG Zhonghui, XIN Yong. Molecular Dynamics Simulation on the Relationship of Oxygen Diffusion and Polymer Chains Activity[J]. Materials Reports, 2019, 33(8): 1293 -1297 .
[8] CHANG Jingjing. Spin Coating Epitaxial Films[J]. Materials Reports, 2019, 33(12): 1919 -1920 .
[9] ZHUANG Xiaodong, LI Rongxing, YU Xiaohua, XIE Gang, HE Xiaocai, XU Qingxin. Preparation of Lithium Titanate Electrode Materials by Solid Phase Method[J]. Materials Reports, 2019, 33(16): 2654 -2659 .
[10] BIAN Guixue, CHEN Yueliang, ZHANG Yong, WANG Andong, WANG Zhefu. Equivalent Conversion Coefficient of Aluminum/Titanium Alloy Between Acidic NaCl Solution with Different Concentration and Water Based on Galvanic Corrosion Simulation[J]. Materials Reports, 2019, 33(16): 2746 -2752 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed