Please wait a minute...
材料导报  2025, Vol. 39 Issue (20): 24070116-9    https://doi.org/10.11896/cldb.24070116
  高分子与聚合物基复合材料 |
火灾环境下飞机内饰壁板材料引燃特性研究
田威1, 贾旭宏1,2,3,*, 丁思婕1, 朱禹龙1,2,3, 朱新华1,2,3, 张宇强1,2,3
1 中国民用航空飞行学院民航安全工程学院,四川 广汉 618307
2 中国民用航空飞行学院民机火灾科学与安全工程四川省重点实验室,四川 广汉 618307
3 四川省全电通航飞行器关键技术工程研究中心,四川 广汉 618307
Experimental Study on Ignition Characteristics of Aircraft Interior Panel Materials in Fire Environment
TIAN Wei1, JIA Xuhong1,2,3,*, DING Sijie1, ZHU Yulong1,2,3, ZHU Xinhua1,2,3, ZHANG Yuqiang1,2,3
1 College of Civil Aviation Safety Engineering, Civil Aviation Flight University of China, Guanghan 618307, Sichuan, China
2 Civil Aircraft Fire Science and Safety Engineering Key Laboratory of Sichuan Province, Civil Aviation Flight University of China, Guanghan 618307, Sichuan, China
3 Technology Engineering Research Center for All-electric Navigable Aircraft, Guanghan 618307, Sichuan, China
下载:  全 文 ( PDF ) ( 27148KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 现役民机内饰壁板材料分为玻璃纤维/酚醛树脂层压板和夹芯板两种,在发生火灾时起隔热和延缓火焰蔓延的作用。民航管理部门更多关注壁板耐烧穿性能,但火源作用下的壁板高温热表面在烧穿前具有一定的引燃能力,其火灾危险性不可忽视。本工作通过研究两种壁板材料的隔热性能及背面温升情况,探究火灾环境下两种壁板对航空运输环境常见可燃物(松木、纯棉、瓦楞纸板)的引燃时间及不同间距下的热通量,建立壁板材料对外传热分布模型,确定其引燃边界条件。结果表明,层压板和夹芯板背火侧最大温升速率分别达3.7 ℃/s、0.48 ℃/s,夹芯板隔热性能优于层压板;建立的对外传热模型显示,随着间距增加,两种壁板对流传热逐渐减弱,层压板过渡至热辐射引燃,而夹芯板热对流仍占传热主导地位;近火侧高温热源功率相同时,层压板引燃三种可燃物的临界距离分别为1.0 cm、3.0 cm、6.0 cm,夹芯板不能引燃松木,引燃纯棉和瓦楞纸板的临界距离均为1.0 cm;夹芯板引燃时间明显长于层压板,在引燃间距为1.0 cm时,引燃纯棉和瓦楞纸板的时间分别增至202 s和190 s。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
田威
贾旭宏
丁思婕
朱禹龙
朱新华
张宇强
关键词:  航空器火灾  民机壁板  玻璃纤维/酚醛树脂  引燃特性    
Abstract: The interior wall panel materials currently used in civil aircraft are categorized into two types: glass fiber/phenolic resin laminated boards and sandwich panels. These materials serve to insulate and delay the spread of flames in case of a fire. The civil aviation management department places greater emphasis on the burn-through resistance of wall panels. However, the high-temperature surface of these panels under the influence of a fire source possesses a certain ignition capability prior to burn-through, posing a significant fire hazard. This work investigates the thermal insulation performance and backside temperature rise of these two types of wall panels. Additionally, it explores the ignition times and heat flux of common combustibles (pine wood, cotton, and corrugated cardboard) in aviation transportation environments under fire conditions. A model was established to simulate the distribution of external heat flux for these panels, aiming to determine their ignition boundary conditions. The findings revealed that the maximum temperature rise rates on the backside of laminated boards and sandwich panels were 3.7 ℃/s and 0.48 ℃/s, respectively, indicating that the insulation performance of the sandwich panel surpasses that of the laminated board. The established external heat flux model demonstrates that as the spacing increases, the convective heat transfer between the two types of panels gradually diminishes. The laminated board transitions to thermal radiation ignition, whereas the thermal convection of the sandwich panel still dominates the heat transfer process. When the power of the high-temperature heat source on the near-fire side remains constant, the critical distances for igniting the three combustibles on the laminated board are 1.0 cm, 3.0 cm, and 6.0 cm, respectively. The sandwich panel is incapable of igniting pine wood, while the critical distances for igniting cotton and corrugated cardboard are both 1.0 cm. Notably, the ignition time of sandwich panels is significantly longer than that of laminated panels. Specifically, the ignition time of sandwich panels is significantly longer than that of laminated panels, increasing to 202 s and 190 s, respectively, when the spacing is 1.0 cm.
Key words:  aircraft fire    civil aircraft panel    glass fiber/phenolic resin    ignition characteristics
发布日期:  2025-10-27
ZTFLH:  V258+.3  
  TB332  
基金资助: 民航局安全能力建设项目(MHAQ2023030);民机火灾科学与安全工程四川省重点实验室揭榜挂帅项目(MZ2023JB01);中国民用航空飞行学院面上项目(J2022-091)
通讯作者:  *贾旭宏,工学博士,中国民用航空飞行学院教授。主要从事民机复合材料传热及燃烧机制、飞机火灾事故调查等方面的研究。jiaxuhong02@163.com   
作者简介:  田威,中国民用航空飞行学院安全科学与工程专业工学硕士研究生,指导老师为贾旭宏教授。主要研究领域为民机复合材料传热及燃烧机制。
引用本文:    
田威, 贾旭宏, 丁思婕, 朱禹龙, 朱新华, 张宇强. 火灾环境下飞机内饰壁板材料引燃特性研究[J]. 材料导报, 2025, 39(20): 24070116-9.
TIAN Wei, JIA Xuhong, DING Sijie, ZHU Yulong, ZHU Xinhua, ZHANG Yuqiang. Experimental Study on Ignition Characteristics of Aircraft Interior Panel Materials in Fire Environment. Materials Reports, 2025, 39(20): 24070116-9.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24070116  或          https://www.mater-rep.com/CN/Y2025/V39/I20/24070116
1 Sun Z Q, Wu A R. Materials Reports, 2015, 29(11), 61(in Chinese).
孙振起, 吴安如. 材料导报, 2015, 29(11), 61.
2 Federal Aviation Administration USA. Appendix E to part 178, title 49-flame penetration resistance-test (2024-09-24), https://www. ecfr. gov/current/title-49/appendix-Appendix%20E%20-to%20Part%20178.
3 Aircraft airworthiness Certification Department Civil Aviation Administration of China. Flame burnthrough test for aircraft cargo liners: MH/T 6086-2012, Civil Aviation Administration of China, China, 2012(in Chinese).
中国民用航空局航空器适航审定司. 中华人民共和国民用航空行业标准 飞机货舱衬板耐烧穿实验: MH/T 6086-2012, 中国民用航空局, 2012.
4 Department of Policies and Regulations, Civil Aviation Administration of China. Civil aviation regulations of China: Part 25: Airworthiness standards for transport aircraft: CCAR25-R4, Civil Aviation Administration of China, China, 2011(in Chinese).
中国民用航空局政策法规司. 中国民用航空规章 第25部 运输类飞机适航标准:CCAR-25-R4, 中国民用航空局, 2011.
5 General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China. Fire-resistance tests-elements of building construction-part 1: general requirements: GB/T 9978. 1-2008, Standards Press of China, China, 2008 (in Chinese).
中华人民共和国国家质量监督检验检疫总局. 建筑构件耐火试验方法. 第1部分:通用要求:GB/T 9978. 1-2008, 中国标准出版社, 2008.
6 Chiu H T, Chiu S H, Jeng R E, et al. Polymer Degradation and Stability, 2000, 70(3), 505.
7 Eibl S. Fire and Materials, 2012, 36(4), 309.
8 Shi S S, Wang Y, Jiang T, et al. ACS Omega, 2022, 7(33), 29433.
9 Henderson J B, Wiebelt J A, Tant M R. Journal of Composite Materials, 1985, 19(6), 579.
10 Henderson J B, Wiecek T. Journal of Composite Materials, 1987, 21(4), 373.
11 Tranchard P, Samyn F, Duquesne S, et al. Materials, 2017, 10(5), 470.
12 Benoit V, Adem A, Alexis C, et al. Composites Part B: Engineering, 2023, 262, 110807.
13 Papadogianni V, Romeos A, Giannadakis A, et al. Fire Technology, 2020, 56(3), 1253.
14 Papadogianni V, Romeos A, Perrakis K, et al. Heat and Mass Transfer, 2024, 60, 2049.
15 Hussain N, Jocelyn L, Thomas R. Fire and Materials, 2022, 46(8), 1135.
16 Liu T Q, Wang N, Zheng Q Y, et al. Chinese Journal of Engineering, 2020, 42(12), 1647(in Chinese).
刘天奇, 王宁, 郑秋雨, 等. 工程科学学报, 2020, 42(12), 1647.
17 Li H, Fan M H, Feng Z Y, et al. Acta Materiae Compositae Sinica, 2019, 36(6), 1457(in Chinese).
李翰, 樊茂华, 冯振宇, 等. 复合材料学报, 2019, 36(6), 1457.
18 Feng Z Y, Fan B X, Wang N S D, et al. Materials Reports, 2021, 35(2), 2191(in Chinese).
冯振宇, 范保鑫, 王纳斯丹, 等. 材料导报, 2021, 35(2), 2191.
19 Li D, Liu Y Z, Chen X, et al. Journal of Xi’an Jiaotong University, 2024, 58(8), 49(in Chinese).
李冬, 柳云钊, 陈鑫, 等. 西安交通大学学报, 2024, 58(8), 49.
20 Hou P F, Zhao B, Hu S L, et al. Acta Materiae Compositae Sinica, 2025, 42(3), 1678(in Chinese).
侯鹏飞, 赵璧, 胡胜利, 等. 复合材料学报, 2025, 42(3), 1678.
21 Chen S J, Xu Y Y, Wang Z, et al. Chinese Journal of Materials Research, 2020, 34(12), 933(in Chinese).
陈少杰, 徐艳英, 王志, 等. 材料研究学报, 2020, 34(12), 933.
22 Ji Z, Xu Y Y, Li J D, et al. Fire Science and Technology, 2020, 39(7), 994(in Chinese).
计智, 徐艳英, 李金都, 等. 消防科学与技术, 2020, 39(7), 994.
23 He Y H, Huang S, Jia X H, et al. Fire Science and Technology, 2018, 37(4), 456(in Chinese).
贺元骅, 黄松, 贾旭宏. 消防科学与技术, 2018, 37(4), 456.
24 Jia X H, Tang J, Ma J H, et al. Journal of Tsinghua University (Science and Technology), 2024, 64(1), 164(in Chinese).
贾旭宏, 汤婧, 马俊豪, 等. 清华大学学报(自然科学版), 2024, 64(1), 164.
25 Xu S. Study on fire prevention and smoke toxicity characteristics of composite materials for civil aircraft. Master’s Thesis, Shenyang Aerospace University, China, 2023 (in Chinese).
徐松. 民用飞机复合材料防火及烟毒特性研究. 硕士学位论文, 沈阳航空航天大学, 2023.
26 Jia X H, Yang X G, Xu S T, et al. Aerospace Materials & Technology, 2022, 52(4), 88(in Chinese).
贾旭宏, 杨晓光, 徐松涛, 等. 宇航材料工艺, 2022, 52(4), 88.
27 Zhang X Y, Jia X H, Dai S P, et al. Journal of Tsinghua University (Science and Technology), 2023, 63(10), 1520(in Chinese).
张晓宇, 贾旭宏, 代尚沛, 等. 清华大学学报(自然科学版), 2023, 63(10), 1520.
28 National Fire Protection Association. Standard for fire-retardant-treated wood and fire-retardant coatings for building materials: NFPA 703, National Fire Protection Association, Quincy, 2018.
29 Parker W, Lee B. Fire safety Research: Proceedings of a Symposium Held at the National Bureau of Standards, Gaithersburg, md. , 1974, pp. 139.
30 Chen X, Lu S, Li C, et al. Fire and Materials, 2014, 38(3), 409.
31 Wu S, Ma H, Mao Y J, et al. Packaging Engineering, 2023, 44(13), 292(in Chinese).
吴松, 马红, 毛勇建, 等. 包装工程, 2023, 44(13), 292.
32 Song S Q, Ren M J, Li C G, et al. Fire Science and Technology, 2022, 41(7), 888(in Chinese).
宋思齐, 任美杰, 李成钢, 等. 消防科学与技术, 2022, 41(7), 888.
33 Zhao Z Y, Zhang S C. Journal of Lanzhou Institute of Technology, 2023, 30(5), 48(in Chinese).
赵宗玉, 张树川. 兰州工业学院学报, 2023, 30(5), 48.
34 Feng Z Y, Wang N S D, Fan M H, et al. Fiber Reinforced Plastics/Composits, 2019(11), 24(in Chinese).
冯振宇, 王纳斯丹, 樊茂华, 等. 玻璃钢/复合材料, 2019(11), 24.
35 Zhang X Y, Jia X H, Ding S J, et al. Acta Materiae Compositae Sinica, 2024, 41(4), 1840(in Chinese).
张晓宇, 贾旭宏, 丁思婕, 等. 复合材料学报, 2024, 41(4), 1840.
36 Xu S T, Jia X H, Yang X G, et al. Plastics Science and Technology, 2022, 50(5), 29(in Chinese).
徐松涛, 贾旭宏, 杨晓光, 等. 塑料科技, 2022, 50(5), 29.
37 Ding S J, Jia X H, Tian W, et al. Acta Materiae Compositae Sinica, 2025, 42(4), 1910(in Chinese).
丁思婕, 贾旭宏, 田威, 等. 复合材料学报, 2025, 42(4), 1910.
38 Wang Z D. In: Science & Technique Committee of CFPA:China, 2022, pp. 58(in Chinese).
王在东. 中国消防协会学术工作委员会消防科技论文集:2022, pp. 58.
39 Tohir M Z M, Spearpoint M, Fleischmann C. Fire and Materials, 2018, 42(1), 69.
[1] 徐文卓, 李文晓, 苏钊阳, 时起珍. 纤维束拉伸件几何尺寸对界面横向拉伸强度影响分析[J]. 材料导报, 2024, 38(10): 22120125-9.
[2] 戴宗妙, 彭雪峰, 刘喜宗, 吴恒. 铺层方式对碳纤维预浸料不同温度下压缩特性的影响[J]. 材料导报, 2021, 35(z2): 564-569.
[1] LI Jiawei, LI Dayu, GU Yixin, XIAO Jinkun, ZHANG Chao, ZHANG Yanjun. Research Progress of Regulating Anatase Phase of TiO2 Coatings Deposited by Thermal Spray[J]. Materials Reports, 2017, 31(3): 26 -31 .
[2] . Adhesion in SBS Modified Asphalt Containing Warm Mix Additive and
Aggregate System Based on Surface Free Theory
[J]. Materials Reports, 2017, 31(4): 115 -120 .
[3] JIA Zhihong, WENG Yaoyao, DING Lipeng, CHENG Tao, LIU Yingying, LIU Qing. Sn Microalloying for Aluminum Alloys: Strengthening Effects and Mechanisms[J]. Materials Reports, 2017, 31(9): 123 -127 .
[4] WANG Ru, ZHANG Shaokang, WANG Gaoyong. Influence and Mechanism of Mineral Admixtures on Setting and Hardening of Styrene-Butadiene Copolymer/Cement Composite Cementitious Material[J]. Materials Reports, 2017, 31(24): 69 -73 .
[5] DING Yutian, DOU Zhengyi, GAO Yubi, GAO Xin, LI Haifeng, LIU Dexue. In-situ Observation of Solidification Process of GH3625 Superalloy at Different Cooling Rates[J]. Materials Reports, 2017, 31(24): 150 -155 .
[6] JIN Chenxin, XU Guojun, LIU Liekai, YUE Zhihao, LI Xiaomin,TANG Hao, ZHOU Lang. Effects of Bulk Electrical Resistivity and Doping Type of Silicon on the Electrochemical Performance of Lithium-ion Batteries with Silicon/Graphite Anodes[J]. Materials Reports, 2017, 31(22): 10 -14 .
[7] LIU Guoyi, LIU Yuanjun, ZHAO Xiaoming. A Study on Protecting Efficiency to the Radiative Heat of the Outer Fabric for the Fire Proximity Suits[J]. Materials Reports, 2017, 31(22): 116 -120 .
[8] ZHANG Wangxi, WANG Yanzhi, LIANG Baoyan, LI Qiquan, LUO Wei, SUN Changhong, CHENG Xiaozhe, SUN Yuzhou. Review on the Development of Nanodiamonds Used as Functional Materials[J]. Materials Reports, 2018, 32(13): 2183 -2188 .
[9] YANG Fang, ZHANG Long, YU Kun, QI Tianjiao, GUAN Debin. Recent Advances in Humidity Sensitivity of Graphene[J]. Materials Reports, 2018, 32(17): 2940 -2948 .
[10] TIAN Yaqiang, LI Wang, ZHENG Xiaoping, WEI Yingli, SONG Jinying, CHEN Liansheng. Application of Alloy Elements in Quenching and Partitioning Steel:an Overview[J]. Materials Reports, 2019, 33(7): 1109 -1118 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed