Please wait a minute...
材料导报  2025, Vol. 39 Issue (6): 24010207-7    https://doi.org/10.11896/cldb.24010207
  无机非金属及其复合材料 |
CeO2-g-C3N4/C三相复合材料的模板诱导合成及电化学性能
黄晨阳1,2, 刘成宝1,2,3,*, 陈丰1,2,3, 邱永斌4, 孟宪荣5, 陈志刚1,2,3
1 苏州科技大学江苏省环境功能材料重点实验室,江苏 苏州 215009
2 苏州科技大学材料科学与工程学院,江苏 苏州 215009
3 苏州科技大学江苏水处理技术与材料协同创新中心,江苏 苏州 215009
4 江苏省陶瓷研究所有限公司,江苏 宜兴 214221
5 苏州市环境科学研究所,江苏 苏州 215007
Template-induced Synthesis of CeO2-g-C3N4/C Composite and Its Electrochemical Performance
HUANG Chenyang1,2, LIU Chengbao1,2,3,*, CHEN Feng1,2,3, QIU Yongbin4, MENG Xianrong5, CHEN Zhigang1,2,3
1 Jiangsu Key Laboratory for Environment Functional Materials, Suzhou University of Science and Technology, Suzhou 215009, Jiangsu, China
2 School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, Jiangsu, China
3 Jiangsu Collaborative Innovation Center of Technology and Material for Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, Jiangsu, China
4 Jiangsu Province Ceramics Research Institute Co., Ltd., Yixing 214221, Jiangsu, China
5 Suzhou Institute of Environmental Science, Suzhou 215007, Jiangsu, China
下载:  全 文 ( PDF ) ( 11794KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 石墨相氮化碳(g-C3N4)具有二维结构,且合成方法简单,稳定性好,可作为超级电容器中石墨烯电极的替代材料,但其本身的电容性能较差;而生物质炭具有天然的多孔结构和丰富的表面官能团,具有储能优势。本工作以尿素为g-C3N4前驱体,杏鲍菇为生物模板诱导合成薄片状g-C3N4/C,获得高比表面积的多孔两相复合材料,再通过水热法将CeO2纳米颗粒负载在生物质炭表面和孔洞内得到CeO2-g-C3N4/C三相复合材料。经过电化学测试,CeO2-g-C3N4/C的最高比电容为169.6 F·g-1,2 000次循环后的电容保持率为97%。g-C3N4与生物质炭相结合提高了基体材料的储能性能,CeO2的负载提高了电化学活性,三相复合使整体材料有优秀的储能性能、充放电性能和循环稳定性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
黄晨阳
刘成宝
陈丰
邱永斌
孟宪荣
陈志刚
Abstract: Graphite phase carbon nitride (g-C3N4) has a two-dimensional structure, good stability and simple synthesis method. It can be used as an alternative material for graphene electrode in supercapacitors, but its capacitor performance is poor. Biochar has the advantages of energy storage due to its natural porous structure and abundant surface functional groups. Urea was used as the precursor of g-C3N4 and pleulocargyrus eryngii was selected as the biological template, then lamellar g-C3N4/C was synthesized to obtain porous two-phase composite material with high specific surface area. The results showed that CeO2 nanoparticles were anchored on the surface and pores of biochar by hydrothermal method to obtain CeO2-g-C3N4/C three-phase composite material. The maximum specific capacitance of CeO2-g-C3N4/C was 169.6 F·g-1, and the capacitance retention rate was 97% after 2 000 cycles. The combination of g-C3N4 and biochar improves the energy storage performance of the matrix material. The load of CeO2 improves the electrochemical activity. The energy storage performance, charge and discharge performance and recycle stability of the whole material is excellent because of the three-phase composite.
出版日期:  2025-03-25      发布日期:  2025-03-24
通讯作者:  *刘成宝,苏州科技大学材料科学与工程学院副教授、硕士研究生导师。主要从事二维基催化材料、量子点材料和环境功能材料等的结构设计、合成及其环境和能源性能评价研究。Lcb@mail.usts.edu.cn   
引用本文:    
黄晨阳, 刘成宝, 陈丰, 邱永斌, 孟宪荣, 陈志刚. CeO2-g-C3N4/C三相复合材料的模板诱导合成及电化学性能[J]. 材料导报, 2025, 39(6): 24010207-7.
HUANG Chenyang, LIU Chengbao, CHEN Feng, QIU Yongbin, MENG Xianrong, CHEN Zhigang. Template-induced Synthesis of CeO2-g-C3N4/C Composite and Its Electrochemical Performance. Materials Reports, 2025, 39(6): 24010207-7.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24010207  或          https://www.mater-rep.com/CN/Y2025/V39/I6/24010207
1 Gonzalez A, Goikolea E, Barrena J A, et al. Renewable and Sustainable Energy Reviews, 2016, 58, 1189.
2 Nagaraiarao S H, Nandagudi A, Viswanatha R, et al. ChemEngineering, 2022, 6(1), 5.
3 Adedoja O S, Sadiku E R, Hamam Y. Journal of Inorganic and Organometallic Polymers and Materials, 2023, 33(12), 3915.
4 Wang L, Shao D N, Guo J Y, et al. Energy Technology, 2019, 8(3), 1901003.
5 Liu M M, Niu B T, Guo H X, et al. Inorganic Chemistry Communications, 2021, 130, 108687.
6 Asaithambia S, Sakthivela P, Karuppaiaha M, et al. Journal of Alloys and Compounds, 2021, 866, 158807.
7 Montini T, Melchionna M, Monai M, et al. Chemical Reviews, 2016, 116(10), 5987.
8 Trovarelli A. Catalysis Reviews-Science and Engineering, 1996, 38, 439.
9 Corma A, Atienzar P, Garcia H, et al. Nature Materials, 2004, 3, 394.
10 Yan T, Li R Y, Zhu H Y, et al. Materials Research Bulletin, 2016, 78, 163.
11 Brezesinski T, Wang J, Senter R, et al. ACS Nano, 2010, 4(2), 967.
12 Heydari H, Gholivand M B. Applied Physics A, 2017, 123, 187.
13 Dezfuli A S, Ganjali M R, Naderi H R, et al. RSC Advances, 2015, 5, 46050.
14 Kumar R, Agrawal A, Nagarale R K, et al. The Journal of Physical Chemistry C, 2016, 120(6), 3107.
15 Aravinda L S, Bhat K U, Bhat B R. Materials Letters, 2013, 112, 158.
16 Ji Z Y, Shen X P, Zhou H, et al. Ceramics International, 2015, 41(7), 8710.
17 Kalubarme R S, Kim Y H, Park C J, et al. Nanotechnology, 2013, 24, 365401.
18 Maheswari N, Muralidharan G. Energy & Fuels, 2015, 29(12), 8246.
19 Padmanathan N, Selladurai S. RSC Advances, 2014, 4, 6527.
20 Priya D S, Kennedy L J, Anand G T. Results in Surfaces and Interfaces, 2023, 10, 100096.
21 Kavil J, Anjana M P, Joshy D, et al. RSC Advances, 2019, 9(66), 38430.
22 Xu Y X, Zhou Y F, Guo J Y. Journal of Alloys and Compounds, 2019, 10, 343.
23 Tian S, Zhang X, Zhang Z. Desalination, 2020, 479, 114348.
24 Chandra M S, Siva N K, Mohammad A, et al. Molecules, 2023, 28(6), 2489.
25 Veena B, Pavithra S, Seetha M, et al. AIP Advances, 2022, 12, 125310.
26 Sreenivasa K G, Sai K A, Adinarayana R S, et al. Carbon Letters, 2024, 34, 841.
27 Bibi N, Xia Y, Ahmed S, et al. Ceramics International, 2018, 44(18), 22262.
28 Zhang S J, Li Y T, Du Y L, et al. Diamond and Related Materials, 2022, 130, 109507.
29 Xie A J, Tao F, Wang L, et al. Electrochimica Acta, 2018, 261, 314.
30 Das H T, Dutta S, Das N, et al. Journal of Energy Storage, 2022, 50, 104643.
No related articles found!
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed