Please wait a minute...
材料导报  2025, Vol. 39 Issue (11): 24010116-7    https://doi.org/10.11896/cldb.24010116
  高分子与聚合物基复合材料 |
TiO2/有机氟复合改性丙烯酸酯乳液及其对亚麻织物的多功能整理
高晓辉1, 李玉峰1,2,*, 付鑫鑫1, 冯峰1, 赵阳1
1 齐齐哈尔大学化学与化学工程学院,黑龙江 齐齐哈尔 161006
2 齐齐哈尔大学材料科学与工程学院,黑龙江 齐齐哈尔 161006
TiO2/Organic Fluorine Composite Modified Acrylate Emulsion and Its Application to Multifunctional Finishing of Flax Fabrics
GAO Xiaohui1, LI Yufeng1,2,*, FU Xinxin1, FENG Feng1, ZHAO Yang1
1 School of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, Heilongjiang, China
2 School of Materials Science and Engineering, Qiqihar University, Qiqihar 161006, Heilongjiang, China
下载:  全 文 ( PDF ) ( 18016KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为使整理后的亚麻织物具有拒水、防紫外线等多种功能,使用溶胶-凝胶法制备二氧化钛(TiO2)溶胶,采用硅烷偶联剂(KH-570)对其进行改性,制备了可聚合的有机硅改性二氧化钛单体(Si-TiO2),再以甲基丙烯酸十二氟庚酯(DFMA)为有机氟单体,使用无皂乳液聚合法制备了核壳型Si-TiO2/有机氟复合改性丙烯酸酯乳液整理剂(TiFAc)。利用FTIR、TEM、XPS等表征了TiFAc乳胶粒的结构;通过SEM和EDS表征了采用轧-烘-焙工艺整理的亚麻织物的表面元素和形貌;分析了Si-TiO2的质量浓度等对整理亚麻织物的拒水性、紫外线防护性能及物理力学性能等应用及服用性能的影响。结果表明:当Si-TiO2的含量达到5%(质量分数)时,TiFAc乳液整理亚麻织物表现出优异的拒水性和防紫外线性能,其水接触角为155.79°,紫外线防护系数(UPF)为106.89。整理亚麻织物的断裂强力和断裂伸长率相比原始亚麻织物有所提升,同时,整理亚麻织物保持良好的透气性能。整理亚麻织物具有良好的耐久性,经过30次皂洗后水接触角仍保持在150.25°,UPF为91.13。TiFAc乳液多功能整理剂有效地提升了亚麻织物在日常及工业上的应用价值。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
高晓辉
李玉峰
付鑫鑫
冯峰
赵阳
关键词:  二氧化钛(TiO2)  有机氟  丙烯酸酯  乳液聚合  亚麻织物  拒水  紫外防护性能    
Abstract: In order to obtain water repellency and UV protection multifunction of the finished flax fabric, titanium dioxide (TiO2) sol was prepared by sol-gel method and modified by silane coupling agent (KH-570) to prepare polymerizable titanium dioxide monomer (Si-TiO2). The core-shell Si-TiO2/fluorinated acrylate composite emulsion finishing agent (TiFAc) was prepared by soap-free emulsion polymerization with dodecafluoroheptyl methacrylate (DFMA) as the organic fluorine monomer. The structure of TiFAc emulsion particle was characterized by FTIR, TEM and XPS. The surface elements and morphology of the finished flax fabric by rolling-drying-baking process were characterized by SEM and EDS. The effect of mass concentration of Si-TiO2 on the application and wearing performance of finished flax fabric such as water repellency, UV protection performance, physical and mechanical properties were analyzed. The results indicate that TiFAc emulsion finished flax fabric showed the best water resistance and UV protection when m(Si-TiO2) reached 5wt%. The water contact angle reached 155.79°, and UV protection factor (UPF) value reached 106.89. The breaking strength and elongation at break of TiFAc emulsion finished flax fabric increased comparing to that of the flax fabric unfinished. The good air permeability of the finished flax fabric still maintains. The finished flax fabric has good durability even after soap washing for 30 times, the water contact angle is still 150.25°, and UPF is 91.13. TiFAc emulsion finishing agent largely improves the applicative value of flax fabrics in daily life and industrial engineering.
Key words:  titanium dioxide (TiO2)    organic fluorine    acrylate    emulsion polymerization    flax fabric    water repellency    UV protection perfor-mance
发布日期:  2025-05-29
ZTFLH:  TQ610.4+8  
基金资助: 黑龙江省省属高等学校基本科研业务费科研项目(145309524)
通讯作者:  *李玉峰,齐齐哈尔大学材料科学与工程学院教授、硕士研究生导师。目前主要从事功能高分子防腐材料、功能乳液整理剂等方面的研究工作。lyf1170@163.com   
作者简介:  高晓辉,齐齐哈尔大学化学与化学工程学院教授、硕士研究生导师。目前主要从事导电高分子材料、功能乳液等方面的研究工作。
引用本文:    
高晓辉, 李玉峰, 付鑫鑫, 冯峰, 赵阳. TiO2/有机氟复合改性丙烯酸酯乳液及其对亚麻织物的多功能整理[J]. 材料导报, 2025, 39(11): 24010116-7.
GAO Xiaohui, LI Yufeng, FU Xinxin, FENG Feng, ZHAO Yang. TiO2/Organic Fluorine Composite Modified Acrylate Emulsion and Its Application to Multifunctional Finishing of Flax Fabrics. Materials Reports, 2025, 39(11): 24010116-7.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24010116  或          https://www.mater-rep.com/CN/Y2025/V39/I11/24010116
1 Bilen U. Journal of Natural Fibers, 2021, 18(3), 430.
2 Dalbaşi E S, Özςelik Kayseri G. Journal of Natural Fibers, 2021, 18(6), 909.
3 Suryaprabha T, Sethuraman M G. Fibers and Polymers, 2021, 22, 1033.
4 Hao G, Zhu L, Yang W, et al. Journal of Fluorine Chemistry, 2015, 176, 1.
5 Zhang Q, Wang Q, Jiang J, et al. Langmuir, 2015, 31(16), 4752.
6 Cai L, Dai L, Yuan Y, et al. Applied Surface Science, 2016, 371, 453.
7 Zhang W, Ma J, Gao D, et al. Progress in Organic Coatings, 2016, 94, 9.
8 Zhou J H, Chen X, Duan H, et al. Fibers and Polymers, 2017, 18(4), 625.
9 Fan Z, Li Q, Cai X, et al. Indian Journal of Fibre & Textile Research, 2017, 42(4), 495.
10 Delibaş A. Journal of Coatings Technology and Research, 2021, 18, 717.
11 Zhao T T, Gao X H, Li Y F, et al. Fine Chemicals, 2022, 39(6), 1044(in Chinese).
赵甜甜, 高晓辉, 李玉峰, 等. 精细化工, 2022, 39(6), 1044.
12 Li X P, Lu M Y, Ai S L, et al. Journal of Adhesion Science and Technology, 2015, 29(19), 2049.
13 Tao P, Li Y, Rungta A, et al. Journal of Materials Chemistry, 2011, 2, 18623.
14 Jiang X, Tian X Z, Gu J, et al. Applied Surface Science, 2011, 257(20), 8451.
15 Zhou J H, Cui Y G, Wang L B, et al. Polymer Composites, 2018, 39(12), 4467.
16 Silakul P, Magaraphan R. Polymer Composites, 2019, 40(1), 304.
17 Ye C X, Li H, Cai A, et al. Journal of Macromolecular Science, Part A, 2011, 48(4), 309.
18 Shi S Y, An Q F, Qiu J Y. Materials Reports, 2023, 37(8), 21110053(in Chinese).
史书源, 安秋凤, 邱甲云. 材料导报, 2023, 37(8), 21110053.
19 Zhou J H, Zhao J J, Cui Y J, et al. Polymer International, 2020, 69(2), 140.
20 Zhou J H, Chen X, Ma J Z. Dyes and Pigments, 2017, 139, 102.
21 Li H, Zhou J H, Zhao J J, et al. Colloids and Surfaces B:Biointerfaces, 2020, 192, 111071.
22 Kurt T, Topuz B. Separation and Purification Technology, 2021, 255, 117654.
23 Chien W C, Yu Y Y, Chen P K, et al. Thin Solid Films, 2011, 519(15), 5274.
24 Liu J H, Yu Q, Yu M, et al. Journal of Alloys and Compounds, 2018, 744, 728.
25 Moawia R M, Nasef M M, Mohamed N H, et al. Radiation Physics and Chemistry, 2016, 122, 35.
26 Wang C L, Sheng X X, Xie D L, et al. Progress in Organic Coatings, 2016, 101, 597.
27 Xing Y G, Li X H, Zhang L, et al. Progress in Organic Coatings, 2012, 73(23), 219.
[1] 高浩, 魏中华, 邓佳, 陈涛, 赵海利. PEGMA刷微图案诱导聚苯乙烯纳米颗粒阵列化[J]. 材料导报, 2024, 38(14): 23020080-7.
[2] 钱红梅, 洪铤锴. N-S共掺杂CN/NS-TiO2纳米复合材料的制备及可见光催化性能[J]. 材料导报, 2023, 37(S1): 22110216-7.
[3] 史书源, 安秋凤, 邱甲云. TiO2/有机硅溶胶改性含氟苯丙乳液的制备及性能表征[J]. 材料导报, 2023, 37(8): 21110053-8.
[4] 石现兵, 王涛, 吕明泽, 赵晋, 韩振邦. 树枝状PVDF纳米纤维膜负载TiO2吸附-光催化降解染料废水[J]. 材料导报, 2023, 37(4): 21060080-6.
[5] 张继生, 米扬, 王艳, 赵磊, 秦甜甜, 孟凡成, 刘国军. 聚(丙烯酸酯-硅氧烷)杂化乳胶粒子的制备及性能[J]. 材料导报, 2023, 37(23): 22060203-6.
[6] 马仁博, 胡焕波, 沈婉婷, 吴唯. 聚丙烯酸丁酯/受阻酚阻尼杂化体系的相容性研究[J]. 材料导报, 2023, 37(15): 21120201-6.
[7] 陈亮, 陈少文, 袁振亮, 李启凡, 马会茹, 陈志宏, 李维, 官建国. 有机氟包覆片状FeSiAl吸收剂及其吸波性能[J]. 材料导报, 2022, 36(9): 21030255-6.
[8] 刘济民, 朱慧敏, 潘健, 宋力雅, 刘珊, 花亚冰, 石锐, 徐亮. 新型可生物降解的组织可黏附材料的合成与表征[J]. 材料导报, 2022, 36(3): 20120176-6.
[9] 徐璐, 王华伟, 陈伟峰, 王宁, 曾超, 刘伯军, 张明耀. 接枝改性剂SBR-g-MS的组成结构设计与透明ABS树脂的性能研究[J]. 材料导报, 2022, 36(21): 21070096-6.
[10] 汪苏平, 汪源, 胡志豪, 潘阳, 胡传山, 李正平, 高慧敏, 文轩. 乳液聚合法制备降黏型聚羧酸减水剂[J]. 材料导报, 2021, 35(z2): 163-166.
[11] 梁雷, 王彦玲, 刘斌, 李永飞, 汤龙皓. 含氟聚合物乳液的制备方法及在固液界面的应用[J]. 材料导报, 2021, 35(Z1): 586-593.
[12] 马长坡, 刘兴琛, 李永赞, 张健, 亢敏霞, 邱祖民. 聚丙烯酸酯材料改性技术概况[J]. 材料导报, 2021, 35(15): 15212-15219.
[13] 翟乐, 吉海峰, 姚艳梅, 瞿雄伟. 利用聚丙烯酸正丁酯@聚甲基丙烯酸甲酯核/壳结构聚合物增韧氰酸酯树脂[J]. 材料导报, 2019, 33(4): 705-708.
[14] 王 彤, 鲍 艳. 功能型聚丙烯酸酯/无机纳米复合皮革涂饰剂的研究进展[J]. 材料导报, 2017, 31(1): 64-71.
[1] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[2] WU Wei, CHEN Shiying, ZONG Mengjingzi. Dielectric Properties and Thermal Stability of Nano-Al2O3/Polyether Sulfone-epoxy Resin Composites[J]. Materials Reports, 2017, 31(20): 21 -24 .
[3] FANG Sheng, HUANG Xuefeng, ZHANG Pengcheng, ZHOU Junpeng, GUO Nan. A Mechanism Study of Loess Reinforcing by Electricity-modified Sodium Silicate[J]. Materials Reports, 2017, 31(22): 135 -141 .
[4] MO Peicheng, WU Yi, YU Wenlin, WANG Jilin, ZOU Zhengguang, ZHONG Shenglin, WANG Peng. In Situ Synthesis of PcBN Composites by cBN-Ti-Al-Si and Their Mechanical Property[J]. Materials Reports, 2018, 32(14): 2355 -2359 .
[5] HU Yaoqiang, CHEN Fajin, LIU Haining, ZHANG Huifang, WU Zhijian, YE Xiushen. Preparation of Poly(N-isopropylacrylamide) Hydrogel and Its Thermally Induced Aggregation Behavior[J]. Materials Reports, 2018, 32(14): 2491 -2496 .
[6] SONG Gang, CHI Jiayu, YU Jingwei, LIU Liming. Corrosion Behavior of Mg-steel Laser-TIG Hybrid Welding Joint[J]. Materials Reports, 2018, 32(16): 2773 -2777 .
[7] HUANG Hui, HAN Jianfeng, WANG Yishun, XIA Yang, ZHANG Jun, GAN Yongping, LIANG Chu, ZHANG Wenkui. Supercritical CO2 Assisting Cladding of LiMnPO4 on the Surface of Li[Li0.2-Mn0.54Co0.13Ni0.13]O2 and Its Electrochemical Properties[J]. Materials Reports, 2018, 32(23): 4072 -4078 .
[8] WANG Zhonghui, XIN Yong. Molecular Dynamics Simulation on the Relationship of Oxygen Diffusion and Polymer Chains Activity[J]. Materials Reports, 2019, 33(8): 1293 -1297 .
[9] CHANG Jingjing. Spin Coating Epitaxial Films[J]. Materials Reports, 2019, 33(12): 1919 -1920 .
[10] ZHUANG Xiaodong, LI Rongxing, YU Xiaohua, XIE Gang, HE Xiaocai, XU Qingxin. Preparation of Lithium Titanate Electrode Materials by Solid Phase Method[J]. Materials Reports, 2019, 33(16): 2654 -2659 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed