INORGANIC MATERIALS AND CERAMIC MATRIX COMPOSITES |
|
|
|
|
|
Influence of Steel Fiber Shape and Curing System on Strength and Toughness of UHPC |
CHEN Congcong 1, 2, WU Zemei1,2,*, HU Xiang1,2, SHI Caijun1,2,*
|
1 Key Laboratory for Green & Advanced Civil Engineering Materials and Application Technologies of Hunan Province, College of Civil Engineering, Hunan University, Changsha 410082, China 2 International Science and Technology Innovation Center for Green & Advanced Civil Engineering Materials of Hunan Province, Changsha 410082, China |
|
|
Abstract Thermal curing and adding deformed steel fibers are effective in improving strength and toughness of UHPC. In this work, the effects of curing regime (28 d standard curing, 2 d of 90 ℃ steam curing, and 2 d of 90 ℃ hot water curing) and steel fiber shape (straight, corrugated, and hooked) on cubic compressive strength, uniaxial compressive strength, and flexural properties of UHPC were studied. ASTM C1018, JSCE-SF4, and modified Post-Crack-Energy Ratio (PCER) were used to evaluate the flexural toughness of UHPC. The 3D optical scanner was used to quantify the roughness of the fracture surface of UHPC with different steel fiber shapes. The results show that 2 d of hot water curing and steam curing improved the mechanical properties of UHPC to a certain extent, and the flexural properties of UHPC were significantly improved, in comparison to 28 d standard curing. Compared to UHPC with straight steel fibers, UHPC with hooked steel fibers increased the flexural strength and PCER toughness index by 46.26%—58.82% and 32.77%—39.81%, respectively, and enhanced the fracture surface roughness RN by 41.67%. A good exponential relationship is found between roughness parameters and bending toughness, and the roughness parameter can be used to characterize the toughness of UHPC. Besides, a linear relationship between uniaxial compressive strength and cubic compressive strength was found, and the correlation coefficient ranged from 0.83 to 0.93. The toughness indexes evaluated using ASTM C1018 and PCER methods were basically consistent with the results obtained by using the area enclosed by load-displacement curve at 4 mm deflection and the flexural properties. The proposed modified PCER method introduced the initial flexural toughness ratio to characterize the flexural toughness before reaching the peak deflection, which rendered more accurate calculation results.
|
Published: 10 August 2024
Online: 2024-08-29
|
|
Fund:National Natural Science Foundation of China (52008164), the Natural Science Foundation of Hunan Province of China (2022JJ30144), and the Fundamental Research Funds for the Central Universities (531118010484). |
|
|
1 Ouyang X, Shi C J, Shi J H, et al. Journal of the Chinese Ceramic Society, 2021, 49(2), 296 (in Chinese). 欧阳雪, 史才军, 史金华, 等. 硅酸盐学报, 2021, 49(2), 296. 2 Shi C J, Wu Z M, Xiao J F, et al. Construction and Building Materials, 2015, 101(5), 741. 3 Blais P Y, Couture M. PCI journal, 1999, 44(5), 121. 4 Zhou M, Lu W, Song J, et al. Construction and Building Materials, 2018, 186, 67. 5 Du J, Meng W, Khayat K H, et al. Composites Part B:Engineering, 2021, 224, 109. 6 Shi C J, He W, Wu Z M, et al. Bulletin of the Chinese Ceramic Society, 2015, 34 (8), 27 (in Chinese). 史才军, 何稳, 吴泽媚, 等. 硅酸盐通报, 2015, 34(8), 27. 7 Banthia N, Trottier J F. ACI Materials Journal, 1995, 92(2), 146. 8 Wang D H, Shi C J, Wu L M. Bulletin of the Chinese Ceramic Society, 2016, 35 (1), 141 (in Chinese). 王德辉, 史才军, 吴林妹. 硅酸盐通报, 2016, 35(1), 141. 9 Shi J H, Shi C J, Ouyang X, et al. Materials Reports, 2021, 35(3), 75 (in Chinese). 史金华, 史才军, 欧阳雪, 等. 材料导报, 2021, 35(3), 75. 10 Wu Z, Shi C, He W, et al. Construction and Building Materials, 2016, 103, 8. 11 Wu Z, Shi C, He W, et al. Journal of Materials in Civil Engineering, 2016, 28(12), 06016017. 12 Su J, Shi C J, Qin H J, et al. Journal of the Chinese Ceramic Society, 2020, 48 (11), 1740 (in Chinese). 苏捷, 史才军, 秦红杰, 等. 硅酸盐学报, 2020, 48(11), 1740. 13 Ren G, Wu H, Fang Q, et al. Construction and Building Materials, 2018, 164, 29. 14 Othman H, Marzouk H, Sherif M. Construction and Building Materials, 2019, 195, 547. 15 Lu Z, Feng Z G, Yao D D, et al. Materials Reports, 2020, 34 (Z1), 203 (in Chinese). 卢喆, 冯振刚, 姚冬冬, 等. 材料导报, 2020, 34(Z1), 203. 16 Peng G F, Niu X J, Zhao Y L. Journal of Building Materials, 2016, 19 (6), 1013 (in Chinese). 朋改非, 牛旭婧, 赵怡琳. 建筑材料学报, 2016, 19(6), 1013. 17 Grzelka M, Majchrowski R, Sadowski . Materials and Structures, 2011, 7(251), 97. 18 Carpinteri A, Chiaia B. Materials and Structures, 1995, 28, 435. 19 Sabir B, Wild S, Asili M. Cement and Concrete Research, 1997, 27(5), 785. 20 Carpinteri A, Chiaia B. International Journal of Fracture, 1996, 76, 327. 21 Wu K R, Yan A, Liu J Y, et al. Cement and Concrete Research, 2000, 30(6), 981. 22 Czarnecki S, Hoła J. International Journal of Adhesion and Adhesives, 2016, 67, 3. 23 Issa M A, Issa M A, Islam M S, et al. Engineering Fracture Mechanics, 2003, 70(1), 125. 24 Kurtis K E, El-Ashkar N H, Collins C L, et al. Cement and Concrete Composites, 2003, 25(7), 695. 25 Erdem S, Blankson M A. Construction and Building Materials, 2013, 40, 70. 26 Helmi M, Hall M R, Construction and Building Materials, 2016, 105, 554. 27 Li G L, Shi C J, Wu Z M, et al. Bulletin of the Chinese Ceramic Society, 2021, 40(10), 3316(in Chinese). 李港来, 史才军, 吴泽媚, 等. 硅酸盐通报, 2021, 40(10), 3316. 28 Peng Y Z, Yang W, Zhu Q S. Applied Mechanics and Materials, 2012, 204, 3989. 29 Huo X S, Wong L U. Construction and Building Materials, 2006, 20(10), 1049. 30 Saly F, Sun W. Journal of Southeast University (English Edition), 2014, 30(3), 348(in Chinese). Saly Fathy, 孙伟. 东南大学学报, 2014, 30(3), 348. 31 Halit Yazıcı, Mert Yücel Yardımcı, Serdar Aydın, et al. Construction and Building Materials, 2008, 23(3), 23. 32 Deniz E, Baradan B. Construction and Building Materials, 2013, 42, 53. 33 Wu Z M, Shi C J, He W. Construction and Building Materials, 2017, 136, 307. 34 Han J G, Yan P Y. China Concrete, 2010, 5(11), 42(in Chinese). 韩建国, 阎培渝. 混凝土世界, 2010, 5(11), 42. 35 GB/T 2419-2005, 水泥胶砂流动度测定方法, 北京, 2005. 36 CECS 13-2009, 纤维混凝土试验方法标准, 北京, 2009. 37 Zeng W, Ding Y N. Acta Materiae Compositae Sinica, 2020, 37(9), 2303(in Chinese). 曾伟, 丁一宁. 复合材料学报, 2020, 37(9), 2303. 38 Hou S, Shi C, Li K, et al. In:the 16th International Congress on the Chemistry of Cement 2023 (ICCC2023). Bangkok, 2023, pp.653. 39 Hou S, Li K, Wu Z, et al. Cement and Concrete Composites, 2022, 127, 104404. 40 Ding Y, Li D, Zhang Y. Composite Structures, 2018, 187, 325. 41 Ficker T, Martišek D, Jennings H M. Cement and Concrete Research, 2010, 40(6), 947. 42 Xin Y B, Hsia K J, Lange D A. Journal of the American Ceramic Society, 1995, 78(12), 3201. 43 Apedo K L, Montgomery P, Serres N, et al. Materials Characterization, 2016, 118, 212. 44 Lange D A, Jennings H M, Shah S P. Journal of the American Ceramic Society, 1993, 76(3), 589. 45 Zhou H, Xie H. Surface Review and Letters, 2003, 10(5), 751. 46 Wang D, Shi C, Wu Z, et al. Construction and Building Materials, 2015, 96, 368. 47 Wu Z, Khayat K H, Shi C. Cement and Concrete Composites, 2018, 90, 193. 48 Wu Z, Shi C, Khayat K H. Composites Part B:Engineering, 2019, 174, 107021. 49 Hu A X, Liang X W, Yu J, et al. Journal of Hunan University(Natural Sciences), 2018, 45 (9), 30 (in Chinese). 胡翱翔, 梁兴文, 于婧, 等. 湖南大学学报 (自然科学版), 2018, 45(9), 30. 50 Li L, Tao J C, Cao M L, et al. Acta Materiae Compositae Sinica, 2022, 39 (11), 5377(in Chinese). 李黎, 陶佳诚, 曹明莉, 等. 复合材料学报, 2022, 39(11), 5377. 51 Yang J, Fang Z. China Journal of Highway and Transport, 2009, 22 (1), 39(in Chinese). 杨剑, 方志. 中国公路学报, 2009, 22(1), 39. 52 Chang Y F, Shi J P, Hou Y P. Bulletin of the Chinese Ceramic Society, 2021, 40(10), 3385(in Chinese). 常亚峰, 师俊平, 侯亚鹏. 硅酸盐通报, 2021, 40(10), 3385. 53 Zhang W H, Zhang Z X, Liu P Y, et al. Journal of the Chinese Ceramic Society, 2020, 48 (8), 1(in Chinese). 张文华, 张仔祥, 刘鹏宇, 等. 硅酸盐学报, 2020, 48(8), 1. 54 Xiao Z L, Yang D Y, Qian Y F, et al. Hans Journal of Civil Engineering, 2021(10), 542(in Chinese). 肖志龙, 杨鼎宜, 钱云峰, 等. 土木工程, 2021(10), 542. 55 Huang W R, Yang Y Z, Liu Y J, et al. Journal of the Chinese Ceramic Society, 2020, 48(11), 1747(in Chinese). 黄维蓉, 杨玉柱, 刘延杰, 等. 硅酸盐学报, 2020, 48(11), 1747. 56 Liang X W, Wang Z Y, Yu J, et al. China Civil Engineering Journal, 2018, 51 (10), 56(in Chinese). 梁兴文, 王照耀, 于婧, 等. 土木工程学报, 2018, 51(10), 56. 57 Fang Z, Xiang Y, Liu C L. Journal of Building Structures, 2013, 34(1), 101(in Chinese). 方志, 向宇, 刘传乐. 建筑结构学报, 2013, 34(1), 101. 58 Lyu X Y, Wang Y, Fu C J, et al. Journal of Harbin Institute of Technology, 2014, 46(10), 1(in Chinese). 吕雪源, 王英, 符程俊, 等. 哈尔滨工业大学学报, 2014, 46(10), 1. 59 Wang Q W, Shi Q X, Tao Y, et al. Journal of Building Materials, 2020, 23(6), 1381(in Chinese). 王秋维, 史庆轩, 陶毅, 等. 建筑材料学报, 2020, 23(6), 1381. 60 Fan T, Yang H, Gao Y T, et al. Concrete structure design, Chongqing University Press, China, 2017, pp.65(in Chinese). 范涛, 杨虹, 高涌涛, 等. 混凝土结构设计, 重庆大学出版社, 2017, pp.65. 61 Nie J, Li C X, Qian G P, et al. Materials Reports, 2021, 35(4), 42(in Chinese). 聂洁, 李传习, 钱国平, 等. 材料导报, 2021, 35(4), 42. 62 Luo Y L, Gao Y X, Yan X Y, et al. Materials Reports, 2021, 35 (Z1), 242(in Chinese). 罗遥凌, 高育欣, 闫欣宜, 等. 材料导报, 2021, 35(Z1), 242. 63 Niu X J, Peng G F, Shang Y J, et al. Journal of the Chinese Ceramic Society, 2018, 46 (8), 1141(in Chinese). 牛旭婧, 朋改非, 尚亚杰, 等. 硅酸盐学报, 2018, 46(8), 1141. 64 Weerheijm J. Delft University of Technology, 1992, 5(23), 992. 65 Kumar S, Barai S V, Kumar S, et al. Concrete Fracture Models and Applications, 2011, 32(5), 9. 66 Huang Y, Huang J, Zhang W, et al. Composite Structures, 2023, 309, 116. |
|
|
|