INORGANIC MATERIALS AND CERAMIC MATRIX COMPOSITES |
|
|
|
|
|
A State-of-the-art Review on Photocatalytic Composite Materials Using Persistent Luminescent Materials as Internal Light Sources |
CAI Xinjie1,2, XU Yidong2,*, WANG Yuquan1,2, WU Jinting2
|
1 College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China 2 College of Civil Engineering, NingboTech University, Ningbo 315100, Zhejiang, China |
|
|
Abstract Both catalytic materials and long-lasting luminescent materials (LPLs) are environmentally clean materials that harness solar energy as their energy source. Among these, the utilization of catalytic materials has demonstrated significant advancements in various domains, including air purification, medical health, and the development of self-cleaning building materials. In light of the studies suggesting that the integration of LPLs as internal light sources within catalytic materials can augment both their durability and effectiveness, this paper endeavors to provide a comprehensive overview of domestic and international research on persistent luminescence-photocatalytic composite materials. First, the various types of photocatalytic materials and LPLs are reviewed. Then, the composite conditions, action mechanisms, and synthesis methods of persistent luminescence-photocatalytic composite materials are discussed. At last, research progress on the catalytic performance of persistent luminescence-photocatalytic composite materials is summarized, and the future research directions are discussed.
|
Published: 10 August 2024
Online: 2024-08-29
|
|
Fund:Key Project of Natural Science Foundation of Zhejiang Province (LZ22E080003), Science and Technology Project of Zhejiang Provincial Department of Transport (202225). |
|
|
1 Loganathan P, Kandasamy J, Jamil S, et al. Chemosphere, 2022, 296, 133961. 2 Zamora-Ledezma C, Negrete-Bolagay D, Figueroa F, et al. Environmental Technology & Innovation, 2021, 22, 101504. 3 Leiknes T. Journal of Environmental Sciences, 2009, 21, 8. 4 Senanu L D, Kranjac-Berisavljevic G, Cobbina S J. Environmental Technology & Innovation, 2023, 29, 103005. 5 Ilie G. Metalurgia International, 2009, 14, 25. 6 Fujishima A, Honda K. Nature, 1972, 238, 37. 7 Kumar P R, Divya N. Materials Today:Proceedings, 2023, 72, 2749. 8 Kołodziejczak-Radzimska A, Jesionowski T. Materials Basel Switzerland, 2014, 7, 2833. 9 Liu X, Wang F, Wang Q. Physical Chemistry Chemical Physics, 2012, 14, 7894. 10 Liu X, Chen X, Li Y, et al. Journal of Materials Chemistry A, 2019, 7, 19173. 11 Emin S, Abdi F F, Fanetti M, et al. Journal of Electroanalytical Chemistry, 2014, 717, 243. 12 Chen L, Meng D, Wu X, et al. Materials Letters, 2016, 176, 143. 13 Liu H, Hou H, Gao F, et al. ACS Applied Materials Interfaces, 2016, 8, 1929. 14 Murcia-López S, Fàbrega C, Monllor-Satoca D, et al. ACS Applied Materials Interfaces, 2016, 8, 4076. 15 Guo M, Wang Y, He Q, et al. RSC Advancesances, 2015, 5, 58633. 16 Tolod K, Hernández S, Russo N. Catalysts, 2017, 7, 13. 17 He R, Huang X, Zhang J, et al. Materials Basel Switzerland, 2019, 12, 2182. 18 Janus M, Mądraszewski S, Zając K, et al. Materials, 2019, 12, 3756. 19 Xu Y, Lin B, Yu X, et al. Construction and Building Materials, 2023, 377, 131122. 20 van den Eeckhout K, Smet P F, Poelman D. Materials, 2010, 3, 2536. 21 Wu S, Pan Z, Chen R, et al. Applications of inorganic afterglow phosphors, Springer International Publishing, Germany, 2017, pp.101. 22 Shi C, Qi Z. Journal of Inorganic Materials, 2016, 19(5), 961. 23 Li H, Yin S, Wang Y, et al. Journal of Molecular Catalysis A:Chemical, 2012, 363, 129. 24 Fan J M, Zhao Z H, Gong C, et al. Journal of Nanoscience and Nanotechnology, 2018, 18, 1675. 25 Li H H, Wang Y H. Materials Science Forum, 2009, 620, 671. 26 Kim J S, Sung H J, Jung S C. Ceramics for environmental systems, John Wiley & Sons, US, 2016, pp 23. 27 Yan J, Liu C, Vlieland J, et al. Journal of Luminescence, 2017, 183, 97. 28 Bedyal A K, Kumar V, Singh V K, et al. Radiation Effects and Defects in Solids, 2013, 168, 1022. 29 Luo H, Bos A J J, Dobrowolska A, et al. Physical Chemistry Chemical Physics, 2015, 17, 15419. 30 Lian S, Qi Y, Rong C, et al. The Journal of Physical Chemistry C, 2010, 114, 7196. 31 Jin Y, Hu Y, Chen L, et al. Journal of the American Ceramic Society, 2013, 96, 3821. 32 Dhanalakshmi M, Basavaraj R B, Darshan G P, et al. Microchemical Journal, 2019, 145, 226. 33 Zhang J, Wang Y, Guo L, et al. Journal of the American Ceramic Society, 2012, 95, 243. 34 Zhang X, Nie J, Liu S, et al. Journal of the American Ceramic Society, 2018, 101, 1576. 35 uzun E, ztürk E, Kalaycioglu O N, et al. Journal of Luminescence, 2016, 173, 73. 36 Liu J M, Liu Y Y, Zhang D D, et al. ACS Applied Materials Interfaces, 2016, 8, 29939. 37 Li Y, Li Y Y, Sharafudeen K, et al. Journal of Materials Chemistry C, 2014, 2, 2019. 38 Yan W Z, Lin L, Chen Y H, et al. Chinese Journal of Luminescence, 2008, 29, 114. 39 Ueda J, Kuroishi K, Tanabe S. Applied Physics Letters, 2014, 104, 101904. 40 Liu F, Liang Y, Pan Z. Physical Review Letters, 2014, 113, 177401. 41 Abdukayum A, Chen J T, Zhao Q, et al. Journal of the American Chemical Society, 2013, 135, 14125. 42 Zhong R, Zhang J, Zhang X, et al. Journal of Luminescence, 2006, 119, 327. 43 Li L, Zeng R, Wang H. Journal of Alloys and Compounds, 2018, 765, 249. 44 Wang J, Ma Q, Zheng W, et al. ACS Nano, 2017, 11, 8185. 45 Cong Y, He Y, Dong B, et al. Optical Materials, 2015, 42, 506. 46 Li Y, Li Y, Chen R, et al. NPG Asia Materials, 2015, 7, e180. 47 Li J, Pang R, Sun W, et al. Journal of Materials Science:Materials in Electronics, 2018, 29, 4163. 48 Dou X, Xiang H, Wei P, et al. Materials Research Bulletin, 2018, 105, 226. 49 Kang F, Zhang Y, Peng M. Inorganic Chemistry, 2015, 54, 1462. 50 Zheng W, Wu H, Ju G, et al. Dalton Transactions, 2018, 48, 253. 51 Sun W, Pang R, Li H, et al. Journal of Materials Chemistry C, 2017, 5, 1346. 52 Feng P, Wei Y, Wang Y, et al. Journal of the American Ceramic Society, 2016, 99, 2368. 53 Wang S, Chen W, Zhou D, et al. Journal of the American Ceramic Society, 2017, 100, 3514. 54 Wang X, Boutinaud P, Li L, et al. Journal of Materials Chemistry C, 2018, 6, 10367. 55 Jin Y, Hu Y, Chen L, et al. Radiation Measurements, 2013, 51, 18. 56 Zhang S, Hu Y, Chen R, et al. Optical Materials, 2014, 36, 1830. 57 Shi J, Sun X, Zheng S, et al. Advanced Optical Materials, 2019, 7, 1900526. 58 Yang Z, Liao J, Wang T, et al. Materials Express, 2014, 4, 172. 59 Hu R, Zhang Y, Zhao Y, et al. Chemical Engineering Journal, 2020, 392, 124807. 60 Kuang J, Liu Y. Journal of the Electrochemical Society, 2006, 153, 245. 61 Fu J. Journal of the American Ceramic Society, 2002, 85, 255. 62 Yi S J, Liu Y L, Zhang J X, et al. Chemical Journal of Chinese Universities, 2004, 25, 8. 63 Liang Y, Liu F, Chen Y, et al. Dalton Transactions, 2016, 45, 1322. 64 Zhao H, Shi M, Zou J, et al. Ceramics International, 2017, 43, 2750. 65 Zhuang Y, Katayama Y, Ueda J, et al. Optical Materials, 2014, 36, 1907. 66 Ning L, Tanner P A, Harutunyan V V, et al. Journal of Luminescence, 2007, 127, 397. 67 Kang F, Sun G, Boutinaud P, et al. Chemical Engineering Journal, 2021, 403, 126099. 68 Aitasalo T, Hölsä J, Jungner H, et al. The Journal of Physical Chemistry B, 2006, 110, 4589. 69 Li S, Wang W, Chen Y, et al. Catalysis Communications, 2009, 10, 1048. 70 Kim B J, Hasan Z, Kim J S. Journal of Ceramic Processing Research, 2013, 14, 601. 71 Zhou C, Zhan P, Zhao J, et al. Ceramics International, 2020, 46, 27884. 72 Xiong Y, Zhao J, Zheng Z, et al. Journal of Materials Science:Materials in Electronics, 2021, 32, 7271. 73 Eun S R, Mavengere S. Catalysts, 2021, 11, 261. 74 Mavengere S, Kim J S. Applied Nanoscience, 2022, 12, 3387. 75 Meng Y, Shen Y, Hou L, Zuo G, et al. Journal of Alloys and Compounds, 2016, 655, 1. 76 Wu H, Peng W, Wang Z M, et al. RSC Advances, 2016, 6, 37995. 77 Yu D B, Mavengere S, Kim J S. Applied Nanoscience, 2022, 12, 3373. 78 Kim J S, Sung H J, Kim B J. Applied Surface Science, 2015, 334, 151. 79 Zhou J, Wang R, Jiao T, et al. Ceramics International, 2019, 45, 13112. 80 Sun H, Wu H, Jin Y, et al. Materials Letters, 2019, 240, 100. 81 Li H, Yin S, Sato T. Nanoscale Research Letters, 2010, 6, 5. 82 Li H, Yin S, Wang Y, et al. Environmental Science Technology, 2012, 46, 7741. 83 Kim S W, Kim J S. Journal of the Korean Ceramic Society, 2013, 50, 50. 84 Xu Q, Mavengere S, Kim J S. Reaction Kinetics, Mechanisms and Catalysis, 2021, 134, 473. 85 Li H, Yin S, Sato T. Research on Chemical Intermediates, 2013, 39, 1501. 86 Locardi F, Sanguineti E, Fasoli M, et al. Catalysis Communications, 2016, 74, 24. 87 Feng P, Wei Y, Wang Y, et al. Journal of the American Ceramic Society, 2016, 99, 2368. 88 Ma X, Zhang J, Li H, et al. Journal of Alloys and Compounds, 2013, 580, 564. 89 Mavengere S, Yadav H, Kim J S. Journal of Ceramic Science and Technology, 2017, 8, 67. 90 Mavengere S, Jung S C, Kim J S. Catalysts, 2018, 8, 521. 91 Mavengere S, Kim J S. Applied Surface Science, 2018, 444, 491. 92 Zargoosh K, Moradi A H. Environmental Nanotechnology, Monitoring Management, 2019, 12, 100273. 93 Menon S G, Bedyal A K, Pathak T, et al. Journal of Alloys and Compounds, 2021, 860, 158370. 94 Li H, Yin S, Wang Y, et al. Journal of Materials Chemistry A, 2012, 1, 1123. 95 Li S S, Liu M, Wen L, et al. Environmental Science and Pollution Research, 2023, 30, 322. 96 Yang C, Zhang F, Liu X, et al. Journal of Solid State Chemistry, 2022, 310, 123057. 97 Hong K, Hong J, Kim Y. Journal of Photochemistry and Photobiology A:Chemistry, 2020, 396, 112520. 98 Li H, Yin S, Wang Y, et al. Journal of Catalysis, 2012, 286, 273. 99 Mavengere S, Kim J S. Coatings, 2020, 10, 917. 100 Jia Z M, Zhao Y R, Shi J N. Construction and Building Materials, 2023, 370, 130462. 101 Chen X, Qiao L, Zhao R, et al. Journal of Environmental Chemical Engineering, 2023, 11, 109416. 102 Zhou X R, Shen L P. Advanced Materials Research, 2011, 332, 1931. 103 Qi M, Shen L P, Wang Y M, et al. Applied Mechanics and Materials, 2013, 405, 2839. |
|
|
|