POLYMERS AND POLYMER MATRIX COMPOSITES |
|
|
|
|
|
Constructing the One-component Metal Halide@Pyridine/Imidazole Porous Organic Frameworks with Multiple Active Sites for Highly Efficient CO2 Adsorption and Catalysis |
LIU Fangwang1,*, WANG Jianhua1, YU Mingyue1, ZHANG Li1, ZHANG Qian1, MENG Jianhua1, GAO Qingping1, JIANG Jinhe2
|
1 Huanbohai Green Chemical Application Technology Collaborative Innovation Center, College of Chemical Engineering, Weifang Vocational College, Weifang 262737, Shandong, China 2 College of Chemical Engineering and Environmental Engineering, Weifang University, Weifang 261061, Shandong, China |
|
|
Abstract Porous organic frameworks designed directionally have been regarded as the promising nano-materials for improving the efficiency of CO2 capture and utilization. In this work, a series of one-component metal halide@pyridine/imidazole porous organic frameworks (M@PIPOFs) with multiple active sites were fabricated via ZnCl2-catalyzed cyano ionothermal polymerization and post-synthesis decoration, meanwhile, the influences of different monomer concentration and polymerization temperature on the material structure performance were discussed in detail. As the heterogeneous catalytic materials with a high specific surface area and hierarchical pore structure, M@PIPOFs also contained abundant hydrogen bond donors, Lewis acid/base groups and nucleophilic groups, which exhibited excellent performance in absorbing CO2 and catalyzing the coupling of CO2 and epoxides into cyclic carbonates. The data indicated that these materials showed the slightly higher CO2 adsorption capacity, and the highest uptake capacity of 3 093 μmol/g was afforded at 273 K and 100 kPa CO2 pressure. The effects of M@PIPOFs structure and reaction conditions on the catalytic performance were investigated, the results revealed the single-component 1.0ZnI2@PIPOF-400-30 had the highest catalytic performance. It could catalyze the coupling reaction of CO2 and epoxides containing different terminal groups with high activity and selectivity under solvent/cocatalyst-free condition, and achieve the corresponding cyclic carbonate with the 88%—98% yield. Moreover, the M@PIPOFs catalysts could be simply separated with durable high stability and activity. Finally, based on the characterization and catalytic data analysis of M@PIPOFs, a feasible one-component catalytic mechanism with multiple active sites was proposed, which hoped this research could provide a refe-rence for the subsequent design and development of highly efficient heterogeneous catalytic systems.
|
Published: 10 August 2024
Online: 2024-08-29
|
|
Fund:National Natural Science Foundation of China (51541205), Science and Technology Development Project of Weifang City (2022GX020), Doctoral Fund Project of Weifang Vocational College. |
|
|
1 Fu L P, Ren Z K, Si W Z, et al. Journal of CO2 Utilization, 2022, 66, 102260. 2 Liu Y, Dong K Y, Jiang Q Z. Energy Economics, 2023, 119, 106557. 3 Zhang F, Chen W J, Li W Q. Molecular Catalysis, 2023, 541, 113093. 4 Wu H G, Li H, Zhao W F, et al. Fuel, 2022, 326, 125074. 5 Lim J, Garcia-Esparza A T, Lee J W, et al. Nanoscale, 2022, 14, 9297. 6 Onishi N, Himeda Y. Coordination Chemistry Reviews, 2022, 427, 214767. 7 Wang Z Y, Xie R J, Hong H L, et al. Journal of CO2 Utilization, 2021, 51, 101644. 8 Li D. The regulation of elevated CO2 on anthocyanin synthesis in postharvest strawberry fruit. Ph. D. Thesis, Zhejiang University, China, 2021 (in Chinese). 李栋. 高浓度CO2处理调控采后草莓花色苷合成机制研究. 博士学位论文, 浙江大学, 2021. 9 Zhang Z W, Guo R T, Qin Y, et al. Materials Reports, 2021, 35(21), 21058 (in Chinese). 张中伟, 郭瑞堂, 秦阳, 等. 材料导报, 2021, 35(21), 21058. 10 Rani P, Husain A, Bhasin K K, et al. Inorganic Chemistry, 2022, 61, 6977. 11 Luo R C, Yang Y Y, Chen K C, et al. Journal of Materials Chemistry A, 2021, 9, 20941. 12 Tamura M, Hiwatashi D, Gu Y, et al. Journal of CO2 Utilization, 2021, 54, 101744. 13 Rehman A, Saleem F, Javed F, et al. Journal of Environmental Chemical Engineering, 2021, 9, 105113. 14 Wang T T. Construction of ionic liquid immobilized MOF and its application in CO2 cycloaddition reaction. Ph. D. Thesis, Dalian University of Technology, China, 2021 (in Chinese). 王童童. 离子液体固载化MOF的构建及在CO2环加成反应中的应用. 博士学位论文, 大连理工大学, 2021. 15 Liu J. Green synthesis of epoxides and cyclic carbonates. Ph. D. Thesis, Nanjing University, China, 2021 (in Chinese). 刘甲. 环氧化合物及环状碳酸酯绿色合成研究. 博士学位论文, 南京大学, 2021. 16 Aomchad V, Gobbo S D, Yingcharoen P, et al. Catalysis Today, 2021, 375, 324. 17 Sohail A, Sarfraz M, Nawaz S, et al. Journal of Cleaner Production, 2023, 399, 136617. 18 Nandigama S K, Bheeram V R, Mukkamala S B. Environmental Chemistry Letters, 2018, 17, 447. 19 Jiang W F, Li X S, Gao G, et al. Chemical Engineering Journal, 2022, 445, 136767. 20 Zhang M M, Semiat R, He X Z. Separation and Purification Technology, 2022, 299, 1217784. 21 Zhou J, Chen W C, Sun C Y, et al. ACS Applied Materials & Interfaces, 2017, 9, 11689. 22 Wang Z, Gu Y, Wu H K, et al. Materials Reports, 2022, 36(8), 9 (in Chinese). 王朕, 顾洋, 吴宏坤, 等. 材料导报, 2022, 36(8), 9. 23 Liu F W, Du S S, Zhang W W, et al. Chemical Engineering Journal, 2022, 435, 134921. 24 Liu M S, Zhao P H, Zhang W W, et al. Fuel, 2022, 315, 123230. 25 Cui C Y, Sa R J, Hong Z X, et al. ChemSusChem, 2020, 13, 180. 26 Wang Y L, Zhang Z M, Ding C, et al. Journal of CO2 Utilization, 2021, 52, 101673. 27 Zhang G Y, Zhao J, Sun F, et al. Chemical Industry and Engineering Progress, 2022, 41, 177 (in Chinese). 张广宇, 赵健, 孙峰, 等. 化工进展, 2022, 41, 177. 28 Takaishi K, Okuyama T, Kadosaki S, et al. Organic Letters, 2019, 21, 1397. 29 Yang C K, Chen Y L, Wang X, et al. Journal of Colloid and Interface Science, 2022, 618, 44. 30 Foltran S, Mereau R, Tassaing T. Catalysis Science & Technology, 2014, 4, 1585. 31 Liu F W, Duan X R, Dai X, et al. Chemical Engineering Journal, 2022, 445, 136687. 32 Kamiya K, Tatebe T, Yamamura S, et al. ACS Catalysis, 2018, 8, 2693. 33 Luo R, Xu W, Chen M, et al. ChemSusChem, 2020, 13, 6509. 34 Yuan K Y. Study on the synthesis of phthalazinone-based microporous organic polymers and their CO2 capture/separation properties. Ph. D. Thesis, Dalian University of Technology, China, 2019 (in Chinese). 袁宽瑜. 二氮杂萘酮基微孔有机聚合物的制备及其CO2吸附分离性能研究. 博士学位论文, 大连理工大学, 2019. 35 Liu F W, Duan X R, Liu M S, et al. Industrial & Engineering Chemistry Research, 2021, 60, 15027. 36 Zhu H, Lin W J, Li Q, et al. ACS Applied Materials & Interfaces, 2020, 12, 8614. 37 Dang Q Q, Liu C Y, Wang X M, et al. ACS Applied Materials & Interfaces, 2018, 10, 27972. 38 Huang J H, Li Y C, Wang Y K, et al. Dyes and Pigments, 2018, 153, 1. 39 Osadchii D Y, Olivos-Suarez A I, Bavykina A V, et al. Langmuir, 2017, 33, 14278. 40 He P J, Huang L H, Wu X Y, et al. Catalysts, 2018, 8, 239. 41 Xu X Q, Cao L H, Yang Y, et al. Chemistry-An Asian Journal, 2021, 16, 142. 42 Bai X J, Song S N, Zhuo Z Y, et al. Materials Reports, 2023, 37(5), 206 (in Chinese). 白小杰, 宋生南, 桌祖优, 等. 材料导报, 2023, 37(5), 206. 43 Li L J, Wang Y, Gu X, et al. Chemistry-An Asian Journal, 2016, 11, 1913. 44 Wang X, Yang L, Chen Y L, et al. Industrial & Engineering Chemistry Research, 2020, 59, 21018. 45 Xiong L F. Functionalization of MIL-101 for CO2 cycloaddition catalysis. Ph. D. Thesis, East China Normal University, China, 2022 (in Chinese). 熊丽飞. 面向CO2环加成催化反应的MIL-101功能化研究. 博士学位论文, 华东师范大学, 2022. 46 Liu M S, Zhao P F, Ping R, et al. Chemical Engineering Journal, 2020, 399, 125682. 47 Roeser J, Kailasam K, Thomas A. ChemSusChem, 2012, 5(9), 1793. 48 Lin Y F, Huang K W, Ko B T, et al. Journal of CO2 Utilization, 2017, 22, 178. 49 Wang X, Liu M S, Yang L, et al. ChemistrySelect, 2018, 3(15), 4101. 50 Schoepff L, Monnereau L, Durot S, et al. ChemCatChem, 2020, 12(22), 5826. 51 Wang H, Liu G, Hao X, et al. ChemistrySelect, 2021, 6, 3712. 52 Gou F, Liu J, Ye N, et al. Journal of CO2 Utilization, 2021, 48, 101534. 53 Li H, Li C Z, Chen J, et al. Chemistry-An Asian Journal, 2017, 12, 1095. 54 Wang J Y, Liang Y T, Zhou D G, et al. Organic Chemistry Frontiers, 2018, 5, 741. 55 Liu M S, Ma C, Cheng X, et al. Separation and Purification Technology, 2023, 317(15), 123937. |
|
|
|