METALS AND METAL MATRIX COMPOSITES |
|
|
|
|
|
Molecular Dynamics Study on Mechanical Properties of Nickel-based Single Crystal Superalloys Containing Voids |
DONG Huicong1, YANG Liu1, GENG Changjian2, SU Ru1,*, LIU Meng3
|
1 School of Materials Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050000, China 2 China Aviation Development Shenyang Engine Research Institute, Shenyang 110015, China 3 AVIC Shangda Superalloy Materials Limited Company, Xingtai 054800,Hebei, China |
|
|
Abstract Nickel-based single crystal superalloys have been widely used in aerospace due to their superior properties, but there are inevitable void defects in the manufacturing process, which affect the mechanical properties of the alloy. The effects of temperature, strain rate and void shape on the tensile mechanical properties and dislocation evolution of nickel-based single crystal superalloy have been studied by molecular dynamics simulation. Results show that temperature and strain rate affect the mechanical properties of materials. With the increase of temperature, Young's modulus, yield strength and material strength are all decreased;With the increase of strain rate, the young's modulus of the material remains unchanged and the yield strength increases. In addition, the presence of voids reduces the strength and Young's modulus of the material. Young's modulus of models with different shapes of voids is the same, while strength of those is different. Due to the acute angle of the diamond-shaped void, the dislocations are more likely to aggregate, the yield strength is smaller, and it is more likely to be broken during the stretching process.
|
Published: 10 August 2023
Online: 2023-08-07
|
|
Fund:2020 Key Research Project in Hebei Province(JMRH2020-27),Hebei Provincial Science and Technology Project Grants(20311007D),Hebei Provincial Key R & D Program (22351008D), and Key Projects in Hebei Province (SJMYF2022X04). |
|
|
1 Wang X M, Hui Y Z, Hou Y Y, et al. Mechanics of Materials, 2019, 136, 103068. 2 Xie H X, Wang C Y, Yu T. Modelling and Simulation in Materials Science and Engineering, 2009, 17(5), 055007. 3 Huang S, Huang M, Li Z. International Journal of Plasticity, 2018, 110, 1. 4 He Z, Zhang Y, Qiu W, et al. Materials Science and Engineering:A, 2016, 676, 246. 5 Huang M, Cheng Z, Xiong J, et al. Acta Materialia, 2014, 76, 294. 6 Zhao G, Tian S, Zhang S, et al. Progress in Natural Science:Materials International, 2019, 29(2), 210. 7 Luo Z P, Wu Z T, Miller D J. Materials Science and Engineering:A, 2003, 354(1-2), 358. 8 Birosca S, Liu G, Ding R, et al. International Journal of Plasticity, 2019, 118, 252. 9 Xiong L, McDowell D L , Chen Y. Scripta Materialia, 2012, 67 (7-8), 633. 10 Farrissey L, Ludwig M, McHugh P E, et al. Computational Materials Science, 2000, 18 (1), 102. 11 Zhang Y, Jiang S, Zhu X, et al. Physics Letters A, 2016, 380(35), 2757. 12 Zhu T, W C Y. Chinese Physics, 2006, 15(9), 2087. 13 Li N L, Wu W P, Nie K. Physics Letters A, 2018, 382 (20), 1361. 14 Huang J F, Wang Z L, Yang E F, et al. International Journal of Automation and Computing, 2016, 14 (1), 68. 15 Khoei A R, Youzi M, Eshlaghi G T. Mechanics of Materials,DOI:10. 1016/j. mechmat. 2022. 104368. 16 Simar A, Voigt H J L, Wirth B D. Computational Materials Science, 2011, 50(5), 1811. 17 Zhang Y, Jiang S, Zhu X, et al. Physica E:Low-dimensional Systems and Nanostructures, 2017, 90, 90. 18 Li Y C, Jiang W G, Zhou Y. Acta Metallurgica Sinica, 2020, 56(5), 776 (in Chinese). 李源才, 江五贵, 周宇. 金属学报, 2020, 56(5), 776. 19 Bachurin D V. Solid State Communications, 2018, 275, 43. 20 Zhang Y, Jiang S, Zhu X, et al. Journal of Physics & Chemistry of Solids, 2016, 98, 220. 21 Wang J P, Liang JW, Wen Z X, et al. Computational Materials Science, 2019, 160, 245. 22 Liu H, Wang X M, Liang H, et al. International Journal of Solids and Structures, 2020, 191, 464. 23 Mishin Y. Acta Materialia, 2004, 52(6), 1451. 24 Mishin Y, Mehl M J, Papaconstantopoulos D A. Physical Review B, 2002, 65(22), 224114. 25 Pun G P, Mishin Y. Philosophical Magazine Series 1, 2009, 89(34), 3245. 26 Frédéric H, Flynn W, Aruna P, et al. Metallurgical and Materials Transactions A, 2018, 49, 4158. 27 Zhu Y, Li Z, Huang M. Computational Materials Science, 2013, 70(70), 178. 28 RaoS I, Dimiduk D M, El-Awady J A, et al. Acta Materialia, 2015, 101, 10. 29 Tao Y L, Zhao D, Liu G W, et al. Journal of Jilin University:Information Science Edition, 2010, 28(4), 414 (in Chinese). 陶永兰, 赵冬, 刘广武, 等. 吉林大学学报:信息科学版, 2010, 28(4), 414. 30 Zhao K J, Chen C Q, Shen Y P, et al. Computational Materials Science, 2009, 46(3), 749. 31 Wang X J, Zhu B Q, Wang H M. Journal of System Simulation, 2010, 22 (2), 534 (in Chinese). 王晓娟, 朱宝全, 王红梅. 系统仿真学报, 2010, 22(2), 534. 32 Liu X B, Xiong Z, Fang Z, et al. Chinese Journal of Nonferrous Metals, 2018, 28(9), 1746 (in Chinese). 刘晓波, 熊震, 方洲, 等. 中国有色金属学报, 2018, 28(9), 1746. 33 Shang J, Yang F, Li C, et al. Computational Materials Science, 2018, 148, 200. 34 Li Y C, Jiang W G, Zhou Y. Rare metal Materials and Engineering, 2020, 49 (7), 2372 (in Chinese). 李源才, 江五贵, 周宇. 稀有金属材料与工程, 2020, 49(7), 2372. 35 Chandra S, Samal M K, Kapoor R, et al. Materials Science and Engineering:A, 2018, 735, 19. 36 Yang P F. Simulation study on tensile mechanical properties and deformation mechanism of Ni-Co alloy. Master's Thesis, Lanzhou University of Technology, China, 2020 (in Chinese). 杨攀峰. Ni-Co合金拉伸力学性能和变形机制的模拟研究. 硕士学位论文, 兰州理工大学, 2020. |
|
|
|