REVIEW PAPER |
|
|
|
|
|
Physical Models of Magnetoresistance Effects in Non-magnetic Semiconductors |
HE Xiong, SUN Zhigang
|
State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070 |
|
|
Abstract Magnetoresistance (MR) effects in non-magnetic semiconductors attract lots of attentions because of its great research significance and potential applications in magnetic sensors, high density storage and so forth. In this paper, several typical physical models such as space-charge effect model, nano-inhomogeneous model, diode-assisted geometry enhanced model, carriers recombination model, and avalanche breakdown model are summarized. Finally, the MR effects based on avalanche breakdown of non-magnetic semiconductors are analyzed and forecasted.
|
Published: 07 May 2018
|
|
|
|
1 Daughton J M. GMR applications[J]. J Magn Magn Mater,1999,192:334 2 Parkin S S, Kaiser C, Panchula A, et al. Giant tunnelling magnetoresistance at room temperature with MgO (100) tunnel barriers[J]. Nat Mater,2004,3:862. 3 Qian Zheng. Research and application of giant magneto-resistance effect[J]. Chin J Sensors Actuators,2003(4):516(in Chinese). 钱政. 巨磁电阻效应的研究与应用[J]. 传感技术学报,2003(4):516. 4 Sun Z G, et al. Magnetic-field-controllable avalanche breakdown and giant magnetoresistive effects in Gold/semi-insulating-GaAs Schottky diode[J]. Appl Phys Lett,2004,85(23):5643. 5 Delmo M P, Yamamoto S, Kasai S, et al. Large positive magnetoresistive effect in silicon induced by the space-charge effect[J]. Nature,2009,457:1112. 6 Chen J J, Piao H G, Luo Z C, et al. Enhanced linear magnetoresis-tance of germanium at room temperature due to surface imperfection[J]. Appl Phys Lett,2015,106(17):173503. 7 Yang D Z, Wang T, Sui W B, et al. Temperature-dependent asymmetry of anisotropic magnetoresistance in silicon p-n junctions[J]. Scientific Rep,2015,5:11096. 8 Luo Z C, Zhang X Z. Resistance transition assisted geometry enhanced magnetoresistance in semiconductors[J]. J Appl Phys,2015,117(17):17A302. 9 Wang T, Si M S, Yang D Z, et al. Angular dependence of the magnetoresistance effect in a silicon based p-n junction device[J]. Nanoscale,2014,6:3978. 10 Delmo M P, Shikoh E, Shinjo T, et al. Bipolar-driven large linear magnetoresistance in silicon at low magnetic fields[J]. Phys Rev B,2013,87(24):245301. 11 Schoonus J J H M, Haazen P P J, Swagten H J M, et al. Unravelling the mechanism of large room-temperature magnetoresistance in silicon[J]. J Phys D: Appl Phys,2009,42(18): 185011. 12 Yang Hui. The mechanism research of electric and magnetoresis-tance effect for silicon-based semiconuctor[D]. Wuhan: Wuhan University of Tecnology,2013(in Chinese). 杨辉. 硅基半导体电输运机制及磁阻效应研究[D].武汉: 武汉理工大学,2013. 13 He X, Sun Z G, Pang Y Y, et al. In-situ detection of local avalanche breakdown and large magnetoresistance in Ag/SiO2/p-Si:B/SiO2/Ag device[J]. J Appl Phys,2017,121(11):114501. 14 Chen J J, Piao H G, Luo Z C, et al. Programmable logic based on large magnetoresistance of germanium[J]. Chin Phys Lett,2016,33(4):047501. 15 Tzeng S Y T, Tzeng Y H. Two-level model and magnetic field effects on the hysteresis in n-GaAs[J]. Phys Rev B,2004,70(8):085208. 16 Ahmad F R. Magnetoresistance in p-type cadmium telluride doped with sodium[J]. Appl Phys Lett,2015,106(1):012109. 17 Lee J, Joo S, Kim T, et al. An electrical switching device controlled by a magnetic field-dependent impact ionization process[J]. Appl Phys Lett,2010,97(25):253505. 18 Chen J J, Zhang X Z, Luo Z C, et al. Large positive magnetoresis-tance in germanium[J]. J Appl Phys,2014,116(11):114511. 19 Wang T, Yang D Z, Si M S, et al. Magnetoresistance amplification effect in silicon transistor device[J]. Adv Electron Mater, DOI:10.10021aelm.201600174. 20 Yang D Z, Wang F C, Ren Y, et al. A large magnetoresistance effect in p-n junction devices by the space-charge effect[J]. Adv Funct Mater,2013,23(23):2918. 21 Porter N A, Marrows C H. Linear magnetoresistance in n-type silicon due to doping density fluctuations[J]. Scientific Rep,2012,2:565. 22 Chen J J, Zhang X Z, Piao H G, et al. Enhanced low field magnetoresistance in germanium and silicon-diode combined device at room temperature[J]. Appl Phys Lett,2014,105(19):193508. 23 Joo S, Kim T, Shin S H, et al. Magnetic-field-controlled reconfigurable semiconductor logic[J]. Nature,2013,494:72. 24 Mathur H, Baranger H U. Random Berry phase magnetoresistance as a probe of interface roughness in Si MOSFET’s[J]. Phys Rev B,2001,64:235325. 25 Velichko A V, Makarovsky O, Mori N, et al. Impact ionization and large room-temperature magnetoresistance in micron-sized high-mo-bility InAs channels[J]. Phys Rev B,2014,90(8):085309. 26 Schoonus J J H M, Bloom F L, Wagemans W, et al. Extremely large magnetoresistance in boron-doped silicon[J]. Phys Rev Lett,2008,100(12):127202. 27 Parish M M, Littlewood P B. Non-saturating magnetoresistance in heavily disordered semiconductors[J]. Nature,2003,426:162. 28 Husmann A, Betts J B, Boebinger G S, et al. Megagauss sensors[J]. Nature,2002,417:421. 29 Herring C. Effect of random inhomogeneities on electrical and galvanomagnetic measurements[J]. J Appl Phys,1960,31(11):1939. 30 Wang J M, Zhang X Z, Wan C H, et al. Diode assisted giant positive magnetoresistance in n-type GaAs at room temperature[J]. J Appl Phys,2013,114(3):034501. 31 Liu Yuan, Tan Xinyu, Piao Hongguang. Influence of interface silicon dioxide layer on diode assisted magnetoresistance in silicon[J]. J China Three Gorges University:Nat Sci,2014, 36(2):98(in Chinese). 刘源, 谭新玉, 朴红光. 界面二氧化硅层对二极管辅助硅基磁电阻效应影响的研究[J]. 三峡大学学报:自然科学版,2014,36(2):98. 32 Ferry D K, Heinrich H. Effect of magnetic fields on impact ionization rates and instabilities in InSb[J]. Phys Rev,1968,169(3):670. 33 Aoki K, Kondo T, Watanabe T. Cross-over instability and chaos of hysteretic I-V curve during impurity avalanche breakdown in n-GaAs under longitudinal magnetic field[J]. Solid State Commun,1991,77(1):91. 34 Lee F S, Cheng Y C. Magnetic-field effects on the hysteresis in se-miconductors with an S-shaped negative differential conductivity[J]. Phys Rev B,1997,56(11):6412. 35 Akinaga H. Magnetoresistive switch effect in metal/semiconductor hybrid granular films: Extremely huge magnetoresistance effect at room temperature[J]. Semicond Sci Technol,2002,17(4):322. 36 Yokoyama M, Ogawa T, Nazmul A M, et al. Large magnetoresis-tance (>600%) of a GaAs:MnAs granular thin film at room tempe-rature[J]. J Appl Phys,2006,99(8):08D502. 37 Lutsev L V, Stognij A I, Novitskii N N. Giant magnetoresistance in semiconductor/granular film heterostructures with cobalt nanoparticles[J]. Phys Rev B,2009,80(18):184423. 38 Li S C, Luo W, Gu J J, et al. Large, tunable magnetoresistance in nonmagnetic Ⅲ-Ⅴ nanowires[J]. Nano Lett,2015,15(12):8026. |
|
|
|