REVIEW PAPER |
|
|
|
|
|
Research Development of Lu-based Scintillation Crystals |
XIAO Xuefeng1,2,3,4, XU Jiayue2, XIANG Weidong1
|
1 School of Materials Science and Engineering, Tongji University, Shanghai 201804; 2 School of Materials Science and Engineering, Shanghai Institute of Technology, Shanghai 201418; 3 Key Laboratory of Physics and Photoelectric Information Functional Materials Sciences and Technology, North Minzu University, Yinchuan 750021; 4 College of Electric and Information Engineering, North Minzu University,Yinchuan 750021 |
|
|
Abstract Scintillation crystals with high density, fast decay, high light yield and low cost have been the focus of attention due to the urgent needs in high energy physics experiments, nuclear medical imaging, security inspection and geological survey. Among them, Ce3+ doped Lu-based scintillation crystals have been extensively investigated and applied in various industrial fields. The recent progress on crystal growth, scintillation properties and applications of Lu-based scintillation crystals, including Lu2SiO4, Lu2O3, Lu3Al5O12, are reviewed. The further development of Lu-based scintillation crystals is presented.
|
Published: 10 September 2017
Online: 2018-05-07
|
|
|
|
1 姚连增. 晶体生长基础[M]. 合肥:中国科学技术大学出版社,1994:7. 2 Zhao Jintai, Wang Hong, Jin Tengteng,et al. Research development of inorganic scintillating crystals[J]. Mater China,2010,29(10):40(in Chinese). 赵景泰,王红,金滕滕,等.闪烁晶体材料的研究进展[J].中国材料进展,2010,29(10):40. 3 Qin Laishun, Ren Guohao. Progress and prospect in the development of LSO scintillation crystal[J]. J Synth Cryst,2003,32(4):286(in Chinese). 秦来顺,任国浩.硅酸镥闪烁晶体的研究进展与发展方向[J].人工晶体学报, 2003,32(4):286. 4 Moszynski M, Kapusta M, Nassalski A, et al. New prospects for time-of-flight PET with LSO scintillators[J]. IEEE Trans Nucl Sci,2006,53(5):2484. 5 Valais I, Michail C, David S, et al. A comparative study of the luminescence properties of LYSO∶Ce, LSO∶Ce, GSO∶Ce and BGO single crystal scintillators for use in medical X-ray imaging[J]. Phys Medica, 2008,24(2):122. 6 Gervino G, Monticone E. Characterization and performance of BGO crystals for positron emission tomography[J]. Sens Actuators A: Phys,1994,42(1-3):487. 7 Liu H F, Bao C, Watanabe M, et al.Investigation of LSO scintillations for high-resolution PET detectors[J]. Acta Photon Sin,2000,29(5):449. 8 Deng Jinkang, Xu Sida, Ning Chuangang, et al. Study on new scintillator properties and their applications[J]. Nucl Phys Rev,1999,16(1):61(in Chinese). 邓景康, 徐四大, 宁传刚,等.新型闪烁晶体的性能与应用研究[J]. 原子核物理评论,1999,16(1):61. 9 Melcher C, Schweitzer J. Cerium-doped lutetium oxyorthosilicate: A fast, efficient new scintillator[J]. IEEE Trans Nucl Sci,1992,39(4):502. 10 Zhang Mingrong, Wei Jin. Status of research and development on scintillation crystals with properties of high density and fast decay time[J]. J Chin Ceram Soc,2004,32(3):384(in Chinese). 张明荣,韦瑾.高密度快衰减闪烁晶体及其研究现状[J]. 硅酸盐学报,2004,32(3):384. 11 Carney J P J, Townsend D W. Clinical count rate performance of an LSO PET/CT scanner utilizing a new front-end electronics architecture with sub-nanosecond intrinsic timing resolution[J]. Radiat Phys Chem,2006,75(12):2182. 12 Cecchi C, Bocci V, Germani S, et al. A LYSO calorimeter for a superB factory[J]. J Phys: Conf Ser,2011,293:012066. 13 Cordelli M, Happacher F, Martini M, et al. CCALT: A crystal calorimeter for the KLOE-2 experiment[J]. J Phys: Conf Ser,2011,293:012010. 14 Boellaard R, Buijs F, et al. Characterization of a single LSO crystal layer high resolution research tomograph[J].Phys Med Biol,2003,48(4):429. 15 Matsumura H, Watanabe S, Nakamura O, et al. Crystal growth of lutetium oxyorthosilicate (LSO) by melt-supply double crucible Czochralski (DC-CZ) method[J]. J Cryst Growth,2007,308(2):348. 16 Qin L S,Lu S, Ding D Z, et al. Color center and radiation center in Lu2SiO5∶Ce crystal[J]. J Rare Earths,2008,26(5):678. 17 Mao R H, Zhang L Y, Zhu R Y. LSO/LYSO crystals for future HEP experiments[J]. J Phys: Conf Ser,2011,293:012004. 18 Yan C F, Zhao G J, Zhang L H, et al. Crystal growth and optical characterization of large-sized cerium-doped Lu1.6Y0.4SiO5[J]. J Inorg Mater,2005,20(5):1301(in Chinese). 严成锋,赵广军, 张连翰,等.大尺寸Ce∶Lu1.6Y0.4SiO5闪烁晶体的生长和光谱特性[J]. 无机材料学报,2005,20(5):1301. 19 Chen J M, Zhang L Y, Zhu R Y. Large size LYSO crystals for future high energy physics experiments[J]. IEEE Trans Nucl Sci,2005,52(6):3133. 20 Alekhin M S, Render J, Kasperczyk M. STED properties of Ce3+ , Tb3+ , and Eu3+ doped inorganic scintillators[J]. Opt Express, 2017,25(2):1251. 21 Zhu R Y. Precision crystal calorimeters in high energy physics: Past, present and future[J]. Proc SPIE,2008,7079:70790W. 22 Ren G H, Wang S H. Demand of nuclear medical imaging techniques for inorganic[J]. Mater Rev,2002,16(7):31(in Chinese). 任国浩,王绍华.核医学成像技术对无机闪烁材料的需求[J].材料导报,2002,16(7):31. 23 Sanchez F, Moliner L, Correcher C, et al. Small animal PET scanner based on monolithic LYSO crystals: Performance evaluation[J]. Med Phys,2012,39(2):643. 24 Carney J P J, Townsend D W. Clinical count rate performance of an LSO PET/CT scanner utilizing a new front-end electronics architecture with sub-nanosecond intrinsic timing resolution[J]. Radiat Phys Chem,2006,75(12):2182. 25 Moses W W. Current trends in scintillator and detectors and mate-rials[J]. Nucl Instrum Methods Phys Res Sect A,2002,487(1-2):123. 26 Lempicki A, Randles M H, Wisniewski D, et al. LuAlO3∶Ce and other aluminate scintillators[J]. IEEE Trans Nucl Sci,1995,42(4):280. 27 Petrosyan A G, Ovanesyan K L, Pedrini C, et al. Bridgman growth and characterization of LuAlO3- Ce3 + scintillator crystals[J]. Cryst Res Technol,1998,33(2):241. 28 Ludziejewski T, Moszynski M, Kapusta M, et al. Investigation of some scintillation properties of YAG∶Ce crystals[J]. Nucl Instrum Methods Phys Res A,1997,389(2-3):287. 29 Pidol L, Kahn Harari A, Vianan B, et al. Scintillation properties of Lu2Si2O7∶Ce3+ a fast and efficient scintillator crystal[J]. J Phys: Condensed Matter,2003,15(12):2091. 30 Spijker J C, Dorenbos P, Eijk C W E, et al. Scintillation properties of LiLuSiO4∶Ce3+ [C]// Proceedings of the International Conference on Inorganic Scintillators and Their Applications. Shanghai,1997:326. 31 Lempicki A, Berman E, Wojtowicz A J, et al. Cerium-doped orthophosphates: New promising scintillators[J]. IEEE Trans Nucl Sci,1993,40(4):384. 32 Guillot N O, Loef E V D, Dorenbos P, et al. Luminescence and scintillation properties in Ce3+ activated trihalide compounds[C]// Proceedings of the Fifth International Conference on Inorganic Scintillators and Their Applications. Moscow,1999:282. 33 Pedrini C, Zhang L, Madej C, et al. Fluorescence and scintillation properties of cerium doped LaLuO3 single crystals[C]// Proceedings of the International Conference on Inorganic Scintillators and Their Applications. Shanghai,1997:343. 34 Spijker J C, Dorenbos P, Allier C P, et al. Lu2S3∶Ce3+ : A new red luminescing scintillator[C]// Proceedings of the International Conference on Inorganic Scintillators and Their Applications. Shanghai,1997:311. 35 Pidol L, Kahn-Harari A, Viana B, et al. High efficiency of lutetium silicate scintillators, Ce-doped LPS, and LYSO crystals[J]. IEEE Trans Nucl Sci,2004,51(3):1084. 36 Pidol L, Kahn-Harari A, Viana B, et al. Scintillation properties of Lu2Si2O7∶Ce3+, a fast and efficient scintillator crystal[J].J Phys: Condensed Matter,2003,15(12):2091. 37 Li H Y, Qin L S, Lu H, et al. Growth and macro-defects study of Lu2Si2O7∶Ce scintillation cystal[J]. J Inorg Mater,2006,21(3):527(in Chinese). 李焕英,秦来顺,陆晟,等. Lu2Si2O7∶Ce闪烁晶体的生长与宏观缺陷研究[J].无机材料学报,2006,21(3):527. 38 Feng X Q. Anti-site defects in YAG and LuAG crystals[J]. J Inorg Mater,2010,25(8):785(in Chinese). 冯锡淇. YAG和LuAG晶体中的反位缺陷[J]. 无机材料学报,2010,25(8):785. 39 Wang L X, Yin M, Guo C X, et al. Synthesis and luminescent pro-perties of Ce3+ doped LuAG nano-sized powders by mixed solvo-thermal method[J]. J Rare Earths,2010,28(1):16. 40 Wang Z F, Xu M, Zhang W P, et al. Synthesis and luminescent properties of nano-scale LuAG∶RE3+ (Ce, Eu) phosphors prepared by co-precipitation method[J]. J Lumin,2007,122(23):437. 41 Chewpraditkul W, Sreebunpeng K, Nikl M, et al. Comparison of Lu3Al5O12∶Pr3+ and Bi4Ge3O12 scintillators for gamma-ray detection[J]. Radiat Meas,2012,47(1):1. 42 Kei Kamada,Shunsuke Kurosawa, Yuui Yokota, et al. Fundamental study of inorganic-organic hybrid scintillator using Pr∶Lu3Al5O12 and plastic scintillator[J]. Jpn J Appl Phys,2014,53:04EH10-1. 43 Andrew George Stewart, Bjoern Seitz, Kevin O’Neill, et al. Energy resolution of Ce∶GAGG and Pr∶LuAG scintillators coupled to 3mm×3mm silicon photomultipliers[J]. IEEE Trans Nucl Sci,2016,63(5):2496. 44 Tomohisa Oya, Go Okada, Takayuki Yangida. Scintillation properties of Lu3Al5O12 co-doped with Nd and Ce[J]. J Ceram Soc Jpn,2016,124(5):536. 45 Petrosyan A G, Ovanesyan K L, Sargsyan R V, et al. Bridgman growth and site occupation in LuAG∶Ce scintillator crystals[J]. J Cryst Growth,2010,312(21):3136. 46 Zhuravleva M, Yang K, Spurrier-Koschan M, et al. Crystal growth and characterization of LuAG∶Ce∶Tb scintillator[J]. J Cryst Growth,2010,312(8):1244. 47 Sugiyama M, Fujimoto Y, Yanagida T, et al. Scintillation properties of Tm-doped Lu3Al5O12 single crystals[J]. Opt Mater,2011,34(2):439. 48 Kuntz J D, Roberts J J, Hough M, et al. Multiple synthesis routes to transparent ceramic lutetium aluminum garnet[J]. Scr Mater,2007,57(10):960. 49 Seeley Z M, Kuntz J D, Cherepy N J, et al. Transparent Lu2O3∶Eu ceramics by sinter and HIP optimization[J]. Opt Mater,2011,33(11):1721. 50 Ogino H, Yoshikawa A, Nikl M, et al. Suppression of defect related host luminescence in LuAG single crystals[J]. Phys Procedia,2009,2(2):191. 51 Fasoli M, Vedda A, Nikl M, et al. Band-gap engineering for removing shallow traps in rare-earth Lu3Al5O12 garnet scintillators using Ga3+ doping[J]. Phys Rev B,2011,84(8):081102. 52 Lempicki A, Randles M H,Wisniewski D, et al. LuAlO3∶Ce and other aluminate scintillators[J]. IEEE Trans Nucl Sci,1995,42(4):2802284. 53 Petrosyan A G, Shirinyan G O, Ovanesyan K L, et al. Bridgman single crystal growth of Ce-doped (Lu1-xYx )AlO3[J]. J Cryst Growth,1999,198-199(1):492. 54 Fedorov A, Korzhik M, Lobko A, et al. Light yield temperature dependence of lutetium-based scintillation crystals[J]. Nucl Instrum Methods Phys Res Sect A,2005,537(1-2):276. 55 Balcerzyk M, Moszynski M, Galazka Z, et al. Perspectives for high resolution and high light output LuAP∶Ce crystals[J]. IEEE Trans Nucl Sci,2005,52(3):1823. 56 Zorenko Y, Gorbenko V, Voznyak T, et al. Intrinsic and Ce3+-related luminescence in single crystalline films and single crystals of LuAP and LuAP:Ce perovskites[J]. IEEE Trans Nucl Sci,2008,55(3):1192. 57 Ding D Z, Ren G H. Progress in the development of LuAlO3∶Ce scintillation crystals[J]. J Synth Cryst,2006,35(2):237(in Chinese). 丁栋周,任国浩. LuAlO3∶Ce闪烁晶体的研究进展[J].人工晶体学报,2006,35(2):237. 58 Chaval J, Clement D, Giba J, et al. Development of new mixed Lux -(RE3+)1-x AP:Ce scintillators (RE3+= Y3+or Gd3+ ):Comparison with other Ce-doped orintrinsic scintillating crystals[J]. Nucl Instrum Methods Phys Res Sect,2000,443(2-3):331. 59 Kuntner C, Aigingerb B, Auffraya E, et al. Scintillation properties and mechanism in Lu0.8Y0.2AlO3∶Ce[J]. Nucl Instrum Methods Phys Res Sect A,2002,486(1-2):176. 60 Mares J A, Nikl M, Soloviev A N, et al. Scintillation and spectroscopic properties of Ce3+-doped YAlO3 and Lux(RE)1-xAlO3- (RE=Y3+ and Gd3+) scintillators[J]. Nucl Instrum Methods Phys Res Sect A,2003,498(1-3):312. 61 Trummer J, Auffray E, Lecoq P, et al. Comparison of LuAP and LuYAP crystal properties from statistically significant batches produced with two different growth methods[J]. Nucl Instrum Methods Phys Res A,2005,551(2-3):339. 62 Cui S X, Zheng Y Q, Shi E W, et al. Czochralski growth of high temperature scintillation crystal Ce∶LSO[J]. J Synth Cryst,2002,31(6):521(in Chinese). 崔素贤,郑燕青,施尔畏,等. 高温闪烁晶体Ce∶LSO的生长研究[J]. 人工晶体学报,2002,31(6):521. 63 Antich P,Parkey R, Tsyganov E, et al. Comparison of LSO samples produced by czochralski and modified musatov methods[J]. Nucl Instrum Methods Phys Res A,2000,441(3):551. 64 Garmash V M, Beloglovski S Y, Lubetsi S L. Industrial manufactu-ring of cerium-doped lutetium silicate crystals on enterprise joint-stock-Company “North crystal”[J]. Nucl Instrum Methods Phys Res A,2002,486(1-2):106. 65 Iwanczyk J S,Tull C R,Macdonald L R, et al. New LSO based scintillators[J]. IEEE Trans Nucl Sci,2000,47(6):1781. 66 Eric B, Robson S R, Mackenzieand J D, et al. New lutetium silicate scintillators[J]. J Sol-Gel Sci Technol,2000,19(1):325. 67 Xu J Y, Lei X Y, Jiang X, et al. Industrial growth of yttira-stabilized cubic zirconia crystals by skull melting process[J]. J Rare Earths,2009,27(6):971. 68 Xu J Y, Zhan Z G, Zhang D B, et al. Skull melting process and its application[J]. J Synth Cryst,2009,38(1):101(in Chinese). 徐家跃,展宗贵,张道标,等.壳熔法生长技术及其应用[J].人工晶体学报,2009,38(1):101. 69 Zhang L, Madej C, Pedrini C, et al. Fast UV luminescence of Ce3+ and Pr3+ ions in lutetium orthoborate with the calcite or vaterite structure[C]// Proceedings of the International Conference on Inorganic Scintillators and Their Applications. Shanghai,1997:303. 70 Wu Y T, Ding D Z, Pan S K, et al. Research on phase transition behavior of lutetium orthoborate LuBO3[J]. Phase Transitions,2011,84(4):315. 71 Wu Y T, Ren G H, Ding D Z, et al. Effects of scandium on the bandgap and location of Ce3+ levels in Lu1-xScxBO3∶Ce scintillators[J]. Appl Phys Lett,2012,100(2):021904. 72 Fukabori A, Chani V, Kamada K, et al. Growth of Tm3+-doped Y2O3, Sc2O3, and Lu2O3 crystals by the Micropulling down technique and their optical and scintillation characteristics[J]. Cryst Growth Des,2011,11(6):2404. 73 Boulon G, Guyot Y, Yoshikawa A. Optimization of the gain in Yb3+-doped cubic laser crystals of 99.99% purity[J].J Rare Earths,2009,27(4):616. 74 Guo R W,Guo C X. Luminescent properties of nano-and submicron-crystal Lu2O3∶Bi3+[J].J Chin Rare Earth Soc,2007,25(5):533. 75 Li J H, Liu X H, Wu J B, et al. High-power diode-pumped Nd∶Lu2O3 crystal continuous-wave thin-disk laser at 1359 nm[J]. Laser Phys Lett,2012,9(3):195. 76 Koopmann P, Peters R, Petermann K, et al. Crystal growth, spectroscopy, and highly efficient laser operation of thulium-doped Lu2O3 around 2 μm[J]. Appl Phys B,2011,102(1):19. 77 Fukabori A, Chani V, Kamada K, et al. Growth of Y2O3, Sc2O3 and Lu2O3 crystals by the micro-pulling-down method and their optical and scintillation characteristics[J]. J Cryst Growth,2011,318(1):823. 78 Li L, Wang X C, Wei X T, et al. Influence of precipitant solution pH on the structural, morphological and upconversion luminescent properties of Lu2O3:2%Yb, 0.2%Tm nanopowders[J]. Physica B: Condensed Matter, 2011,406(3):609. 79 Chen Q W, Shi Y, Chen J Y, et al. Photoluminescence of Lu2O3∶Eu3+ phosphors obtained by glycine-nitrate combustion synthesis[J]. J Mater Res,2005,20(6):1409. 80 Chen Q W, Shi Y, An L Q, et al. A novel co-precipitation synthesis of a new phosphor Lu2O3∶Eu3+[J]. J Eur Ceram Soc,2007,27(1):191. 81 Zhou D, Shi Y, Xie J J, et al. Fabrication and luminescent properties of Nd3+-doped Lu2O3 transparent ceramics by pressureless sintering[J]. J Am Ceram Soc,2009,92(10):2128. 82 Kirdsiri K, Kaewkhao J, Park J M, et al. Scintillation and luminescence properties of Sm 3+-activated Lu2O3-CaO-SiO2-B2O3 (LuCSB) scintillating glasses[J]. J Korean Phys Soc,2016,69(6):1094. |
[1] |
WANG Yuanyuan, ZHANG Lu, CHENG Xixi, QIAN Qi, XU Huan, XU Hua, YANG Xuezhou, YANG Bobo, ZOU Jun. Research Progress in Crystal Growth, Physical Properties and Application of Cubic Boron Arsenide[J]. Materials Reports, 2024, 38(17): 22110207-10. |
|
|
|
|