Materials Reports 2019, Vol. 33 Issue (z1): 8-15 |
INORGANIC MATERIALS AND CERAMIC MATRIX COMPOSITES |
|
|
|
|
|
Research Progress on Black Titanium Dioxide Nanomaterials |
ZHANG Zhen1,2, WANG Baodong1, XU Wenqiang1, QIN Shaodong1, SUN Qi1
|
1 National Institute of Clear-and-Low-Carbon Energy, Beijing 102209 2 Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023 |
|
|
Abstract Compared with the normal white TiO2 nanomaterials, the black TiO2 nanomaterials possess a unique crystalline core-amorphous shell structure and can boost its visible and infrared light absorption by band structure engineering. Improving the optical absorption of black TiO2 nanomaterials have attracted tremendous interest due to their applications in energy field and environmental pollution removal. The current review focuses on the various fabrication methods for black TiO2 nanomaterials, their morphological variations, structure along with their various chemical/physical properties, photocatalytic reaction mechanism and applications to environmental and technological fields such as photodegradation of organic pollutants, photocatalytic water splitting, dye sensitized solar cells, batteries, super capacitors and photothermal therapy.
|
Published: 05 July 2019
|
|
About author:: Zhen Zhang received her doctorate in engineering from Tianjin University in January,2018. She is a postdoctoral fellow at National Institute of Clean-and-Low-Carbon Energy of Beijing, under the supervision of Prof. Qi Sun. Her research has focused on development of photoelectrocatalytic catalysts of CO2 conversion 。Qi Sun, senior researcher of National Institute of Clean-and-Low-Carbon Energy of Beijing, "National Distinguished Experts" of The Recruitment Program for Innovative Talents, director of Coal Chemical Research and Development Center. He mainly engaged in petrochemical, coal chemical catalytic process and environmental catalysis research, and has achieved remarkable achievements in the fields of petrochemical, coal chemical, refining and environmental management. |
|
|
1 Fujishima A, Honda K. Nature,1972,238(5358),37. 2 Fujishima A, Zhang X. Comptes Rendus Chimie,2006,9(5),750. 3 Konstantinou I K, Albanis T A. Applied Catalysis B: Environmental,2004,49(1),1. 4 Liqiang J, Xiaojun S, Jing S, et al. Solar Energy Materials and Solar Cells,2003,79(2),133. 5 Nakata K, Fujishima A. Journal of Photochemistry and Photobiology C: Photochemistry Reviews,2012,13(3),169 6 Tryk D A, Fujishima A, Honda K. Electrochimica Acta,2000,45(15),2363. 7 Schneider J, Matsuoka M, Takeuchi M, et al. Chemical Reviews,2014,114(19),9919. 8 Dette C, Pérez-Osorio M A, Kley C S, et al. Nano Letters,2014,14(11),6533. 9 Chen X, Li C, Grätzel M, et al. Chemical Society Reviews,2012,41(23),7909. 10 Zeng Y, Xue Y, Long L, et al. Water, Air, & Soil Pollution,2019,230(2),50. 11 Ghosh R, Hara Y, Alibabaei L, et al. ACS Applied Materials & Interfaces,2012,4(9),4566. 12 Inturi S N R, Boningari T, Suidan M, et al. The Journal of Physical Chemistry C,2013,118(1),231. 13 Hamedani H A, Allam N K, Garmestani H, et al. The Journal of Physical Chemistry C,2011,115(27),13480. 14 Dukes F M, Iuppa E, Meyer B, et al.Langmuir,2012,28(49),16933. 15 Roberts K G, Varela M, Rashkeev S, et al. Physical Review B,2008,78(1),014409. 16 Liu B, Chen H M, Liu C, et al. Journal of the American Chemical Society,2013,135(27),9995. 17 Mikulas T, Fang Z, Gole J L, et al. Chemical Physics Letters,2012,539(27),58. 18 Likodimos V, Han C, Pelaez M, et al. Industrial & Engineering Chemistry Research,2013,52(39),13957. 19 Hoang S, Guo S, Hahn N T, et al. Nano Letters,2011,12(1),26. 20 Zhang H, Liang Y, Wu X, et al. Materials Research Bulletin,2012,47(9),2188. 21 Jac′imovic′ J, Gaal R, Magrez A, et al. Applied Physics Letters,2013,102(17),172108. 22 Yan C, Yi W, Yuan H, et al. Environmental Progress & Sustainable Ene-rgy,2014,33(2),419. 23 Chen X, Liu L, Yu P Y, et al.Science,2011,331,746. 24 Lu H, Zhao B, Pan R, et al. RSC Advances,2014,4(3),1128. 25 Wei W, Yaru N, Chunhua L, et al. RSC Advances,2012,2(22),8286. 26 Wang Z, Yang C, Lin T, et al. Energy & Environmental Science,2013,6(10),3007. 27 Lu Z, Yip C T, Wang L, et al. Chem Plus Chem,2012,77(11),991. 28 Zeng L, Song W, Li M, et al. Applied Catalysis B: Environmental,2014,147,490. 29 Wang G, Wang H, Ling Y, et al. Nano Letters,2011,11(7),3026. 30 Zhao Z, Tan H, Zhao H, et al.Chemical Communications,2014,50(21),2755. 31 Dong J, Han J, Liu Y, et al. ACS Applied Materials & Interfaces,2014,6(3),1385. 32 Pesci F M, Wang G, Klug D R, et al.The Journal of Physical Chemistry C,2013,117(48),25837. 33 Zhu G, Lin T, Lü X, et al. Journal of Materials Chemistry A,2013,1(34),9650. 34 Lu X, Wang G, Zhai T, et al. Nano Letters,2012,12(3),1690. 35 Wei W, Yaru N, Chunhua L, et al. RSC Advances,2012,2(22),8286. 36 Li H, Chen Z, Tsang C K, et al. Journal of Materials Chemistry A,2014,2(1),229. 37 Aschauer U, Selloni A. Physical Chemistry Chemical Physics,2012,14(48),16595. 38 Lu J, Dai Y, Jin H, et al. Physical Chemistry Chemical Physics,2011,13(40),18063. 39 Liu L, Peter Y Y, Chen X, et al. Physical Review Letters,2013,111(6),065505. 40 Liu N, Schneider C, Freitag D, et al. Nano Letters,2014,14(6),3309. 41 An H R, Park S Y, Kim H, et al. Scientific Reports,2016,6,29683. 42 Tang F, Li M, Gao C, et al. Applied Catalysis B: Environmental,2014,148,339. 43 Yu X, Kim B, Kim YK. ACS Catalysis, 2013,3,2479. 44 Qiu J, Li S, Gray E, et al. Journal of Physical Chemistry C,2014,118,8824. 45 Sasan K, Zuo F, Wang Y, et al.Nanoscale2015,7,13369. 46 Ren R, Wen Z, Cui S, et al. Scientific Reports,2015,5,10714. 47 Wang Z, Yang C, Lin T, et al. Energy & Environmental Science,2013,6(10),3007. 48 Zhu G, Lin T, Lyu X, et al. Journal of Materials Chemistry A,2013,1(34),9650. 49 Cui H, Zhao W, Yang C, et al. Journal of Materials Chemistry A,2014,2(23),8612. 50 Lin T, Yang C, Wang Z, et al. Energy & Environmental Science,2014,7(3),967. 51 Kang Q, Cao J, Zhang Y, et al. Journal of Materials Chemistry A,2013,1(18),5766. 52 Zhang X Q, Chen J B, Wang C W, et al. Nanotechnology2015,26(17),175705 53 Liu X, Gao S, Xu H, et al. Nanoscale,2013,5(5),1870. 54 Xin X, Xu T, Wang L, et al. Scientific Reports,2016,6,23684. 55 Pei Z, Ding L, Lin H, et al. Journal of Materials Chemistry A,2013,1(35),10099. 56 Yang Y, Liao J, Li Y, et al. RSC Advances,2016,6(52),46871. 57 Kim C, Kim S, Hong S P, et al. Physical Chemistry Chemical Physics,2016,18(21),14370. 58 Yang Y, Hoffmann M R. Environmental Science & Technology,2016,50(21),11888. 59 Kim C, Kim S, Lee J, et al. ACS Applied Materials & Interfaces,2015,7(14),7486. 60 Kim C, Kim S, Choi J, et al. Electrochemical Acta,2014,141,113. 61 Dong J, Han J, Liu Y, et al. ACS Applied Materials & Interfaces,2014,6(3),1385. 62 Fan C, Chen C, Wang J, et al.Scientific Reports,2015,5,11712. 63 Chen X, Zhao D, Liu K, et al. ACS Applied Materials & Interfaces,2015,7(29),16070. 64 Pu S, Zhu R, Ma H, et al. Applied Catalysis B: Environmental,2017,218,208. 65 Li P, Xue L, Li Y, et al. Materials Letters,2017,207,217. 66 Barrocas B, Entradas T J, Nunes C D, et al. Applied Catalysis B: Environmental,2017,218,709. 67 Luan X, Wang Y. Materials Science in Semiconductor Processing,2014,25,43. 68 Hong J, Meysami S S, Babenko V, et al. Applied Catalysis B: Environmental,2017,218,267. 69 Cui W, Xue D, Yuan X, et al. Applied Surface Science,2017,411,105. 70 Bai H, Liu Z, Sun D D. Journal of the American Ceramic Society,2013,96(3),942. 71 Zhang W, Xiao X, Zheng L, et al. The Canadian Journal of Chemical Engineering,2015,93(9),1594. 72 Zhang Z, Xiao F, Guo Y, et al. ACS Applied Materials & Interfaces,2013,5(6),2227. 73 Vaiano V, Sacco O, Sannino D, et al. Journal of Chemical Technology and Biotechnology,2014,89(8),1175. 74 Oberdörster G, Ferin J, Gelein R, et al. Environmental Health Perspectives,1992,97,193. 75 Oberdörster G, Ferin J, Lehnert B E. Environmental Health Perspectives,1994,102(Suppl 5),173. 76 Cheng K, Wan J, Liang K. Journal of the American Ceramic Society,1999,82(5),1212. 77 Matsunaga T, Tomoda R, Nakajima T, et al. FEMS Microbiology Letters,1985,29(1-2),211. 78 Chen H, Chen S, Quan X, et al. The Journal of Physical Chemistry C,2008,112(25),9285. 79 Cozzoli P D, Fanizza E, Comparelli R, et al. The Journal of Physical Chemistry B,2004,108(28),9623. 80 Liu N, Schneider C, Freitag D, et al. Nano Letters,2014,14(6),3309. 81 Yu X, Kim B, Kim Y K. ACS Catalysis,2013,3(11),2479. 82 Zhang C, Yu H, Li Y, et al. ChemSusChem,2013,6(4),659. 83 Lin T, Yang C, Wang Z, et al. Energy & Environmental Science,2014,7(3),967. 84 Kako T, Umezawa N, Xie K, et al. Journal of Materials Science,2013,48(1),108. 85 Harris L A, Schumacher R. Journal of the Electrochemical Society,1980,127(5),1186. 86 Liu H, Ma H T, Li X Z, et al. Chemosphere,2003,50(1),39. 87 Liu N, Häublein V, Zhou X, et al. Nano Letters,2015,15(10),6815. 88 Zhi J, Yang C, Lin T, et al. Nanoscale,2016,8(7),4054. |
|
|
|